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Preface
If you are reading this, I guess it’s fair to assume that you are into solving Project Euler
problems. The soltution threads on PE were the place where I first encountered array
programming languages like J, K or – much less frequently – APL.

My main language at that point was C, and I still enjoy using it. But seeing those cryptic
one‐liners (after I finally had my 100 line solution running) quickly aroused my curiosity.
I first went with J, but I soon realized that this wasn’t my cup of tea. It’s a great language
for sure and it offers some very useful builtin functions (e.g. regarding prime numbers),
but I don’t like the fact that you can’t use inline functions like in APL or K. You either
need to define the functions seperately, or use hard to read tacit style. K, on the other
hand, was a better fit for my taste, but I didn’t make friends with it for various reasons.

I avoided APL up to that point, because I was deterred by the special symbols it uses.
But when you finally bring yourself to actually try it, you soon realize that it’s just a
matter of a few hours (at most) before working with them feels just as natural as using
the equivalent ASCII characters in J or K.

This book follows my process of learning APL by solving Project Euler problems. I went
with Dyalog APL, but you should be able to apply most of it to other dialects. If youwant
to give it a try, you don’t need to install anything. Just visit Dyalog’s online interpreter
at TryAPL and you are good to go. My solutions are all tested to work there, but the
ones using file input won’t.

Disclaimer

I am by no means an expert in APL, nor math. While my solutions work, they’ll probably
show my lack of experience. So please don’t take this book as an Hitchhiker’s guide
(I refer to Mastering Dyalog APL for this), but as a tool to to get you started and to
overcome any reservations you may have towards APL.

This is thought to be a “follow along with me learning APL”, so I won’t optimize the
solutions any further. But I appreciate you pointing out typos, errors or sections that
need further clarification. Feel invited to contact me via mgeiss@mgeiss.de.

If you found this book to be helpful and want to support my work, you can do so by
making a donation.
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Problem 1 – Multiples of 3 or 5
So let’s dive right into it with problem 1:

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and
9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

I have two solutions to offer, and during the course of this book, I will usually show the
complete solutions before dissecting them. In my opinion, that’s just the easier way to
get going in languages like APL.

Anyway, here they come:

+/⍸∨⌿0=3 5∘.|⍳999 ⍝Solution 1 (Comments start with '⍝')

+/∪(3×⍳333),5×⍳199 ⍝Solution 2

Solution 1 uses modulo calculation to find all dumbers which are evenly divisible by 3
or 5. In solution 2, those multiples are directly created as lists.

Solution 1
Because array languages like APL usually evaluate expressions from right to left, we
will also start on the right side. The first operator we find there uses Iota (⍳) in its
monadic function (i.e. with only a right argument) as an index generator, with 999 as
the argument.

Used in this most basic form, ⍳ will return a list from 1 up to its right argument:

⍳10
1 2 3 4 5 6 7 8 9 10

If you are familiar with J or K, you will notice that APL uses 1 as its index origin by
default. This is not an issue as far as this book or solving PE problems is concerned, and
I always have it set to 1.
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If you absolutely want or need to, you can change the origin to zero with ⎕IO←0:

⎕IO←0

⍳10
0 1 2 3 4 5 6 7 8 9

Iota is one of the operators you will see me use in pretty much all solutions, because
we need lists of numbers all the time. Usually, it’s the input on which we need to work
on, but sometimes we also need lists that depend on the current value of a variable.
And of course we can also use that as the argument instead of a fixed value:

n←15

⍳n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the list can be further changed by prepending expressions as needed.
Let’s say we want a list to cover a specific range or to contain only even or odd numbers,
squares, powers of 2 etc. This can all be done with just a few keystrokes:

10+⍳10
11 12 13 14 15 16 17 18 19 20

2×⍳10
2 4 6 8 10 12 14 16 18 20

1+2×⍳10
3 5 7 9 11 13 15 17 19 21

2*⍨⍳10
1 4 9 16 25 36 49 64 81 100

2*⍳10
2 4 8 16 32 64 128 256 512 1024

I used Switch (⍨) for the squares example, which swaps the arguments of the affected
operator, and can oftentimes help saving parenteses.
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In this case, it also keeps the right‐to‐left principle intact because Power (*) is one of
those that evaluate left to right:

2*3
8

2*⍨3
9

But now let’s get back to the solution.

After having defined our input list, the next operator is Residue (|), which works just
like the modulo function in any other language, except for the fact that it evaluates right
to left again:

7|3
3

3|7
1

We can use lists on both sides of an operator, which allows us to calculate the results
for modulo 3 and modulo 5 for the complete list with a single expression. But in order
for this to work properly, we also need to bind the Outer Product expression (∘.) to
the Residue operator. The result is a table containing two lists of results, the first one
for mod 3, the second one for mod 5:

3 5∘.|⍳9
1 2 0 1 2 0 1 2 0
1 2 3 4 0 1 2 3 4

Without Outer Productwe would have gotten an error message, because of non match‐
ing list lengths:

3 5|⍳9
LENGTH ERROR: Mismatched left and right argument shapes

3 5|⍳9
∧
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Here are some examples for when Outer Product isn’t needed:

⍝Single element left, list right
5|⍳9

1 2 3 4 0 1 2 3 4

⍝List left, single element right
(⍳9)|10

0 0 1 2 0 4 3 2 1

⍝Matching lengths result in pairwise operation
3 5|7 8

1 3 ⍝3|7 , 5|8

Think of Outer Product as a method to apply an operator to all combinations of left and
right elements. For example, you can use it to build a multiplication table:

(⍳4)∘.×⍳5
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

We now have the results for mod 3 and mod 5, but we are only interested in those
cases where the result is 0, i.e. the number being divisible by 3 or 5 without remainder.

To identify those results, we can add a comparison using Equal (=), which returns a table
of two boolean lists, having 1s on all positions where the results were 0. To make our
life easier, and because we want to find the numbers which are divisible by 3 OR 5, we
can then merge both lists into one using the Or operator (∨).

Let’s see what happens when we do all of this in order:

3 5∘.|⍳9
1 2 0 1 2 0 1 2 0
1 2 3 4 0 1 2 3 4

0=3 5∘.|⍳9
0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0

∨⌿0=3 5∘.|⍳9
0 0 1 0 1 1 0 0 1
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We now have a 1 on every position where there was a 1 in the first or second list (or
both). But to get the desired result, we needed to apply Reduce First (⌿) to the Or
operation. Because we will also use Reduce (/) in a minute, we should take a look at
these two operators first.

Given a list as the input, Reduce will insert the operator between all elements of the list.
For example, if we want to get the sum of all numbers in a list (which we constantly do),
we can use + with Reduce:

+/1 2 3 4 ⍝Same as 1+2+3+4
10

Reduce is also known as Fold. If the input is a table, Reduce will insert the operator in all
rows, returing a list of the results. Reduce First will insert the operator in all columns:

⎕←mat←3 3⍴⍳9
1 2 3
4 5 6
7 8 9

+/mat
6 15 24 ⍝(1+2+3),(4+5+6),(7+8+9)

+⌿mat
12 15 18 ⍝(1+4+7),(2+5+8),(3+6+9)

And that’s why I had to use Reduce First instead of Reduce for the solution. Every column
of the Table represents the results for 3 mod N and 5 mod N, and to join both with Or,
the operator needs to be inserted between the elements of the columns.

We now have our list of joined boolean results. But what we need are the numbers
that correspond to those results, and we can get them by usingWhere (⍸) . Given a list
of 1s and 0s, it will return the indices of all 1s like so:

⍸1 1 0 0 1 0 1
1 2 5 7

⍸∨⌿0=3 5∘.|⍳9
3 5 6 9
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As you can see, conveniently the indices of the 1s in our resulting boolean list are just
the numbers we are interested in. This wouldn’t have worked if the input didn’t start
at 1 and/or if the numbers in the list weren’t spaced by 1. There are other methods to
filter out the relevant results in these cases, and we’ll see them in later problems. All
that’s left to do is to sum them all up using +/, and we are done:

+/⍸∨⌿0=3 5∘.|⍳9
23

Solution 2
As I said in the beginning, solution 2 doesn’t calculate the multiples. Instead, I set up
two lists with the multiples under 1000 using 5×⍳199 and 3×⍳333:

+/∪(3×⍳333),5×⍳199

Those two lists can then be joined using Catenate (,). But we shouldn’t forget to put
the second list (the left argument) in parentheses, or else the interpreter just joins 333
with the first list and then applies ⍳ to the result. Let’s see how the result of Catenate
looks like with a shorter range of numbers up to 20:

(3×⍳6),5×⍳4
3 6 9 12 15 18 5 10 15 20

Now we face the problem that 15 (and all multiples of it in the actual solution) is in
there twice, because it’s a multiple of 3 and also of 5. To resolve this issue, we can use
Unique (∪) which removes all multiples from a list:

∪1 2 2 3 4 5 5 5 6
1 2 3 4 5 6

∪(3×⍳6),5×⍳4
3 6 9 12 15 18 5 10 20

All that’s left to do now is to use +/ again to sum up all numbers.
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Comparing the performance
With an input range that small, both solutions return the result pretty much instantly.
But if we increase the range to all numbers under one million, we start to see a differ‐
ence.

Solution 2 finishes in 8 milliseconds, solution 1 needs 25 milliseconds, thus taking three
times as long, probably because of the modulo calculations. That’s really not a big issue,
but when we start dealing with complex problems and large number ranges, optimizing
the solution is sometimes necessary. That being said, you will be facing memory issues
sooner than runtime issues, at least if you aren’t a millisecond junkie.

]runtime "+/⍸∨⌿0=3 5∘.|⍳999999"
* Benchmarking "+/⍸∨⌿0=3 5∘.|⍳999999"

(ms)
CPU (avg): 25
Elapsed: 25

]runtime "+/∪(3×⍳333333),5×⍳199999"
* Benchmarking "+/∪(3×⍳333333),5×⍳199999"

(ms)
CPU (avg): 8
Elapsed: 8

And that concludes chapter 1. In the next problem, we will start using functions and
learn about two different methods to implement loops.
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Problem 2 – Even Fibonacci numbers
Problem 2 deals with the Fibonacci sequence, and we need to find the sum of all even
members of the sequence below four million:

Each new term in the Fibonacci sequence is generated by adding the previous two terms.
By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four
million, find the sum of the even‐valued terms.

I can again offer two solutions, the first one using recursion to implement a loop, the
second one working with the Power Operator (⍣):

{4E6>s←+/¯2↑⍵:∇⍵,s⋄+/⍵[⍸~2|⍵]}1 2 ⍝Solution 1

{+/⍵[⍸~2|⍵]}{⍵,+/¯2↑⍵}⍣{4e6<+/¯2↑⍺}1 2 ⍝Solution 2

Solution 1
Here we see our first use of an anonymous inline function. Everything enclosed by
the curly braces is the function body, and Omega (⍵) is APL’s placeholder for the right
argument. Let’s see how that works with some easier to digest examples:

{⍵+2}3
5

{⍵+2}1 2 3
3 4 5

{⍵×⍵}⍳10
1 4 9 16 25 36 49 64 81 100

The function will take the argument, replace ⍵ with it, and return the result. Just think
of it as a more or less complex operator, whose function you can design yourself.
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If needed, we can use Alpha (⍺) as the placeholder for a left argument, and also assign
the function to a name:

3{⍺+⍵}5
8

plus←{⍺+⍵}
3 plus 5

8

Furthermore, we can allow the function to be used modadically or dyadically by defining
a default value for ⍺. For example, we could design an increase function that increases
its input by 1 if no left argument is given, or by the value of the left argument if one is
used (essentially making it a useless plus function with benefits):

increase←{⍺←1⋄⍵+⍺}
increase 3

4

5 increase 3
8

The Statement Seperator (⋄) does just what its name implies. Think of it as a replace‐
ment for a new line, when using inline functions instead of writing an APL script or
using the editor of your APL distribution. It’s similar to ; in languages like C or Java.

Going back to the solution, we see that the function gets the list 1 2 passed as its right
argument, which is the beginning of the Fibonacci sequence as defined in the problem.
The function body consists of the following:

4E6>s←+/¯2↑⍵:∇⍵,s⋄+/⍵[⍸~2|⍵]

This is a so called Guard which works according to the principle C:T⋄F. In the first
step, the condition C is evaluated. If this returns true, the expression T gets executed,
else F. You can also chain multiple guards in an if...then...elseif...then...else...manner with
C1:T1⋄C2:T2⋄C3...⋄F.

14



Let’s see how that works with a few simpler examples:

{⍵>3:1⋄0}5
1

{⍵>3:1⋄0}2
0

{⍵<3:3⋄⍵>5:5⋄0}2
3

{⍵<3:3⋄⍵>5:5⋄0}6
5

{⍵<3:3⋄⍵>5:5⋄0}4
0

In our case, the condition to check is 4E6>s←+/¯2↑⍵, which evaluates if the sum of
the last two elements of the current sequence is less than four million. 4e6 stands for
4x106 and is just a shorter alternative to typing 4000000, but that would also work
just fine. ¯2↑⍵ uses Take (↑) to get the last two elements. Given a positive number N
as its left argument, Take will return the first N elements. Using a negative N (denoted
by ¯), the result will be the last N elements:

2↑3 4 5 6 7
3 4

¯2↑3 4 5 6 7
6 7

The sum is calculated by prepending our good friend +/. I store this value in s because I
need it again in the next expression an this saves us from typing (and, more importantly,
APL from calculating) +/¯2↑⍵ again. This is a good example for the fact that you can
define and initialize a variable within an expression.

If this condition is true (thus, the next term of the sequencewill be less than four million),
the next statement ∇⍵,s is executed. This uses Self Reference (∇), which indicates the
recursion. ∇ is the placeholder for the current function block, so ∇⍵,s means ”Append
s to the current ⍵ and call yourself with that as the new right argument”.

Hence, the new input will be 1 2 3, the sequence extended by one term.
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It is important to realize that this will acutally change the contents of ⍵, so in the next
iteration ⍵ is 1 2 3, then 1 2 3 5 etc.

This will go on until we reach the point where the next term would be larger than four
million and the ”false” statement gets executed. Before we discuss the actual expres‐
sion, let’s quickly see what happens when we just put ⍵ there:

{4E6>s←+/¯2↑⍵:∇⍵,s⋄⍵}1 2
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
10946 17711 28657 46368 75025 121393 196418 317811 514229 832040
131346269 2178309 3524578

As expected, the result is the ”finished” sequence. It also shows that the function works
properly, so we just need to take care of filtering out the even terms and summing them.
The list of even terms is found with ⍵[⍸~2|⍵]. First, 2|⍵ returns a list of 1s and 0s,
with 0s for all numbers that are divisible by 2. And because mod 2 has this special
property of only resulting in 1 or 0, we can treat it as a boolean list and use Not (~) to
switch the states:

2|1 2 3 4 5 6 7 8 9 10
1 0 1 0 1 0 1 0 1 0

~2|1 2 3 4 5 6 7 8 9 10
0 1 0 1 0 1 0 1 0 1

The result is the same as if we had used 0=2|⍵ but with less to type. Just like in problem
1, we can now useWhere again to get the indices of all even numbers in the list:

{4E6>s←+/¯2↑⍵:∇⍵,s⋄~2|⍵}1 2
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

{4E6>s←+/¯2↑⍵:∇⍵,s⋄⍸~2|⍵}1 2
2 5 8 11 14 17 20 23 26 29 32

To get from this to the corresponding terms of the sequence, we can use a notation
similar to the array indexing in C/C++/Java etc. with ⍵[⍸~2|⍵]. If you put a single
number in the brackets, it works just like in those languages and will return the element
at that index (keep in mind that APL’s index origin is 1 by default).
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A list of numbers returns the elements at multiple positions accordingly:

fib←1 2 3 5 8 13 21 34 55 89
fib[4]

5

fib[2 5 8]
2 8 34

{4E6>s←+/¯2↑⍵:∇⍵,s⋄⍵[⍸~2|⍵]}1 2
2 8 34 144 610 2584 10946 46368 196418 832040 3524578

And finally, you guessed it, +/ will once again take care of the sum and we are done.

I will, however, add another way to select items from a list when you have a boolean list
of the same length to use as a filter, and this is Replicate (/). I will discuss it in depth in
later problems, but I guess you can figure it out by yourself with the function adjusted
accordingly (note the use of Switch to swap the arguments and save parentheses):

{4E6>s←+/¯2↑⍵:∇⍵,s⋄(~2|⍵)/⍵}1 2
2 8 34 144 610 2584 10946 46368 196418 832040 3524578

{4E6>s←+/¯2↑⍵:∇⍵,s⋄⍵/⍨~2|⍵}1 2
2 8 34 144 610 2584 10946 46368 196418 832040 3524578

Solution 2
This solution uses the Power Operator (⍣, not to be confused with the exponentia‐
tion/nth power operator *) to build the Fibonacci sequence:

{+/⍵[⍸~2|⍵]}{⍵,+/¯2↑⍵}⍣{4e6<+/¯2↑⍺}1 2

You can also see another new aspect here: We can chain function blocks together just
like we did with operators before. It’s working in a f(g(x)) fashion, where the outermost
function represents the leftmost function (or operator) in APL.

In this case, {+/⍵[⍸~2|⍵]} is the last function to be evaluated, and it is used to sum
the even terms of the sequence in the exact same manner as in solution 1.
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Which also means that the sequence itself is built using this part of the solution:

{⍵,+/¯2↑⍵}⍣{4e6<+/¯2↑⍺}1 2

The Power Operator is a very useful (powerful, indeed) tool to implement loops. The
most simple form to use it is with a number as its right argument. In that case, it defines
the number of iterations:

{⍵×2}⍣10⊢1
1024

Here, 1 is the initial input, and it needed to be seperated from right the argument of
the Power Operator, to prevent APL from interpreting 10 1 as a list. That’s why I put
Right (⊢) in between. Ignore that for now, we will discuss Right and Left at some later
point. This use case would be roughtly equivalent to a for loop.

To implement a while loop, we can use a comparison function as the right argument
instead of a fixed number, with ⍺ being the current result of the function to the left of
the Power Operator. In this case, the function will iterate until the comparison returns
true:

{⍵×2}⍣{⍺>4000}1
4096

Another interesting application is using ⍣= to let a function run until a fixed point is
reached. That is, until the function returns its input unchanged. Because the APL
interpreter has a limited precision for floating point numbers, we can also make use of
that when a function converges to some number. Here are three examples for this use
case:

{⍵<1000:⍵+1⋄⍵}⍣=1 ⍝starting with 1, add 1 until we reach 1000
1000

1+{1÷2+⍵}⍣=1 ⍝continued fraction of the square root of 2
1.414213562

1+{1÷1+⍵}⍣=1 ⍝continued fraction of the golden ratio
1.618033989
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You should definitely play around with ⍣ a bit to get a feel for it. Performance‐wise,
I couldn’t see much of a difference compared to using ∇, but that’s probably to be
expected within the small scope of PE problems.

If we go back to the solution, we see that ⍣ is used with a comparison as its stop
condition, and that is basically the same as in solution 1 – we append the sum of the
last two terms until that sum would become larger than four million:

{⍵,+/¯2↑⍵}⍣{4e6<+/¯2↑⍺}1 2
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
10946 17711 28657 46368 75025 121393 196418 317811 514229 832040
1346269 2178309 3524578

And that’s it – the sequence is calculated as intended, and that result is passed to
{+/⍵[⍸~2|⍵]}, taking care of the sum of even terms.
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Problem 3 – Largest prime factor
To solve problem 3, we need to calculate the largest prime factor of 600851475143.

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143?

There are various methods for prime factorization, from simple trial division to highly
complex algorithms. My solution is based on a simple form of trial division, not even
using a prime sieve to make sure that we only divide by prime numbers. But you will
see that this is more than sufficient for numbers that ”small”.

It takes just a millisecond to find the largest factor, which is only a 4‐digit number in this
case. But even if you remove the last digit from 600851475143, resulting in a largest
prime factor of 10976461, the runtime is still barely measurable. Now let’s take a look
at the solution:

{⍺←3⋄0=2|⊃⍵:∇(÷∘2@1)⍵,2⋄0=⍺|⊃⍵:⍺∇(÷∘⍺@1)⍵,⍺⋄(⍺×⍺)<⊃⍵:(⍺+2)∇⍵⋄⊃⍵}6008...

The first thing that happens is ⍺←3, setting the initial value for ⍺ to 3. I do this because
apart from 2, we only need to divide by odd numbers. If we handle that case seperately,
we can then increase ⍺ by 2 in every iteration. We could in fact omit the ”2‐case”
completely for this particular problem, because the number is odd. But in order to keep
the solution suited for any number, I left it in there.

Then follows a chain of three guards. The first one handles the division by 2, hence
it checks if 0=2|⊃⍵ and then recursively calls the function with (÷∘2@1)⍵,2 as the
new right argument. ⊃⍵ uses First (⊃) to return the first element of ⍵. First does the
same as 1↑⍵, it’s just shorter.

Why do I use First if the input is just a single number? Because in the process of doing
the factorization, I will append each factor to the current ⍵ in order to have a complete
list of the prime factors in the end. It’s not needed for this question, but we can make
use of that in later problems.

Now let’s talk about At (@). It can be used to apply a function (or to set a value) only at
defined indices or ranges of a list. The indices or the desired range go to the right of @,
the value or function goes to the left.
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I’ll show some simpler examples:

(-@2 4 6)6 4 8 3 7 1 2 5 9
6 ¯4 8 ¯3 7 ¯1 2 5 9

(0@6 7 8)6 4 8 3 7 1 2 5 9
6 4 8 3 7 0 0 0 9

(0@(>∘3))6 4 8 3 7 1 2 5 9
0 0 0 3 0 1 2 0 0

In our case, the list on which At should work on is ⍵,2, which is 2 appended to the
current ⍵. For the next iteration, we need to divide the first element of this list (which
is always the current ”state” of our number to factor) by 2 with (÷∘2@1)⍵,2.

We can’t just use ÷2, but need to combine this to a single expression with Bind (∘). You
can think of Bind as a glue, making a monadic function out of ÷ and 2 which can be
applied to numbers or lists as if we were using {⍵÷2}:

(÷∘2) 1 2 3 4 5 6
0.5 1 1.5 2 2.5 3

In fact, you can use this so called ”tacit” style instead of {...} functions for a lot of
things, but I usually try to avoid it if I can for readability reasons. But that’s just me...

When we arrive at an odd number (or if the number to factor is odd), the next guard
takes effect, which checks if 0=⍺|⊃⍵, being 0=3|⊃⍵ initially. If that evaluates to true,
the recursion continues with ⍺ unchanged and (÷∘⍺@1)⍵,⍺ as the new right argu‐
ment. This does just the same as discussed before, only using ⍺ instead of 2.

If ⊃⍵ is not divisible by ⍺, the last guard comes into play, calling the function again with
⍺+2 as the new left argument and ⍵ unchanged.

The if condition for this is (⍺×⍺)<⊃⍵, meaning “If ⍺ is smaller than the square root
of ⊃⍵”. We can limit the loop to the square root, because it can be shown that every
composite number has at least one prime factor which is smaller that its square root.
Or in other words, if no prime factor smaller than the square root of ⊃⍵ is found, then
⊃⍵ is the last (and largest) prime factor.

That’s why the final ”false” case just returns ⊃⍵, and that’s also the solution to problem
3.
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But let’s quickly check if the function works as intended, by replacing that last statement
with just ⍵ and give it a number to factor:

{⍺←3⋄0=2|⊃⍵:∇(÷∘2@1)⍵,2⋄0=⍺|⊃⍵:⍺∇(÷∘⍺@1)⍵,⍺⋄(⍺×⍺)<⊃⍵:(⍺+2)∇⍵⋄⍵}10080
7 2 2 2 2 2 3 3 5

And that indeed are all prime factors of 10080. Because of the way the function is
designed, the largest factor is the first one in the list, while the others were appended
in ascending order. If we needed the whole list sorted in ascending order, we could
take care of this easily by adjusting the last statement to ⍵[⍋⍵], but I’ll save that topic
for another problem.

If you followed the explanations for Problem 1 and 2, you now know enough APL to
solve many of the easier PE problems. You will get to learn some more operators and
functionalities in the following chapters, but the hardest part is over!
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Problem 4 – Largest palindrome product
Problem 4 wants us to find the largest palindromic number (i.e. a number that stays the
same written forwards or backwards) that can be formed by the product of two 3‐digit
numbers.

A palindromic number reads the same both ways. The largest palindrome made from the
product of two 2‐digit numbers is 9009 = 91 × 99.

Find the largest palindrome made from the product of two 3‐digit numbers.

My solution is based on converting the numbers to strings, as strings are just lists of
characters in APL (just like in C) and can be reversed easily:

{⌈/⍵[⍸{⍵≡⌽⍵}¨⍕¨⍵]}∪∊∘.×⍨100+⍳899

{⌈/⍵/⍨{⍵≡⌽⍵}¨⍕¨⍵}∪∊∘.×⍨100+⍳899 ⍝same, using Replicate

As already mentioned in problem 1, Outer Product (∘.) can be used to create a multi‐
plication table like so:

(⍳4)∘.×⍳5
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

To get all possible products of 3‐digit numbers, we can use the same technique. First,
let’s build a list of all 3‐digit numbers with 100+⍳899. If we want to use the same
input on both sides of an operator, we can use Commute/Switch (⍨) to copy the right
argument over to the left side:

+⍨3
6

∘.×⍨⍳3
1 2 3
2 4 6
3 6 9

As you can already see in the little multiplication table using only ⍳3, we get a lot of
redundant results which we can filter out using Unique, as we know. But to do so, we
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first need to convert the matrix back to a list, otherwise Unique will only look for unique
rows or columns, depending on how you apply it to the matrix.

To get the elements as a list, we prepend Enlist (∊), after which it’s ”safe” to applyUnique:

∊∘.×⍨⍳5
1 2 3 4 5 2 4 6 8 10 3 6 9 12 15 4 8 12 16 20 5 10 15 20 25

∪∊∘.×⍨⍳5
1 2 3 4 5 6 8 10 9 12 15 16 20 25

This list of unique products in now the input to my function {⌈/⍵[⍸⍵≡⌽⍵¨⍕¨⍵]}.

The first action there is ⍕¨⍵, which applies Format (⍕) to Each (¨) element of the list
seperately. Wait, what?

Sometimes, when you need a list of seperate results, you don’t want to apply an oper‐
ator or a function to an input list as a whole. In this case, I use Each because otherwise
Format – which converts a number to a string – would just make a single string out of
the whole list (like a sentence with the numbers as words). But we need to be able to
reverse each number seperately, and that’s why we need them as seperate strings.

If you turn boxing on with ]box on (should be on by default if you use TryAPL), you
can clearly see the difference:

⍕123 456 789
123 456 789

⍕¨123 456 789
┌───┬───┬───┐
│123│456│789│
└───┴───┴───┘

For the same reason, the inner function is also applied with Each. If we use Reverse
(⌽) on this result (which, you guessed it, returns the reverse of its input) without using
Each, it will just reverse the order, even if the strings are now seperate items. I’ll show
the difference again:

⌽⍳10
10 9 8 7 6 5 4 3 2 1
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⌽⍕¨123 456 789
┌───┬───┬───┐
│789│456│123│
└───┴───┴───┘

⌽¨⍕¨123 456 789
┌───┬───┬───┐
│321│654│987│
└───┴───┴───┘

But the inner function doesn’t only reverse each string, it also checks withMatch (≡) if
the original matches its reverse. We can’t use = in this case, becasue applied to strings it
compares every character and returns a list of results instead of a single boolean value:

{⍵≡⌽⍵}'3243'
0

{⍵≡⌽⍵}'3223'
1

{⍵=⌽⍵}'3243'
1 0 0 1

The result up to this point is a boolean list with 1s on all positions where we have a
palindromic number:

{{⍵≡⌽⍵}¨⍕¨⍵}∪∊∘.×⍨100+⍳899
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 ...

We can now useWhere again to get the indices of the 1s, and then use that to filter our
input with ⍵[⍸⍵≡⌽⍵¨⍕¨⍵] (or by using Replicate as shown in the alternative solution):

{⍵[⍸{⍵≡⌽⍵}¨⍕¨⍵]}∪∊∘.×⍨100+⍳899
10201 11211 12221 13231 14241 15251 16261 17271 ...

There is only one thing left to do, and that is to find the largest number. For this, we
applyMaximum (⌈) with Reduce.
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Given numbers to its left and right, Maximum will return the larger of both. Using it on
a list of numbers with Reduce, Maximum will return the largest member:

3⌈6
6

6⌈3
6

⌈/1 8 4 5 3 7 2
8

And that already concludes this chapter, but we met quite a few new operators to make
of in the following problems!
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Problem 5 – Smallest multiple
The chapter about problem 5 will be a short one, because of Dyalog APL’s built function
to find the least common multiple (LCM).

2520 is the smallest number that can be divided by each of the numbers from 1 to 10
without any remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from 1
to 20?

This is just another wording for the question “Which is the LCM of the numbers from
1 to 20?”. As I said, Dyalog APL has a built in function to calculate the LCM of two
numbers, and it shares the logical And operator (∧). All we need to do now, is to apply
this with Reduce to the list of numbers from 1 to 20, and we are done:

∧/⍳20

But in order to not let this end so soon, and because it fits here, I’ll mention that the Or
operator (∨) is also a GCD (greatest common divisor) function:

24∨512
8

And that’s really it for this problem. No, wait, there’s more!

For those of you who use an APL dialect without LCM function, I’ll also provide a ”man‐
ual” solution which is just using a well knwon GCD algorithm as the inner function to
calculate the LCM in the outer one:

{(⍺×⍵)÷⍺{⍵=0:⍺⋄(⍺|⍵)∇⍺}⍵}/⍳20

I’ll levae that one uncommented, and now it’s really the end of this chapter.
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Problem 6 – Sum square difference
In problem 6 we need to calculate the difference between the square of the sum and
the sum of the squares of the first 100 natural numbers.

The sum of the squares of the first ten natural numbers is

12 + 22 + · · ·+ 102 = 385

The square of the sum of the first ten natural numbers is

(1 + 2 + · · ·+ 10)2 = 552 = 3052

Hence the difference between the sum of the squares of the first ten natural numbers and
the square of the sum is

3052−385 = 2640

Find the difference between the sum of the squares of the first one hundred natural num‐
bers and the square of the sum.

A 1:1 translation of this to APL is my solution and it looks as follows:

{(2*⍨+/⍵)-+/⍵*2}⍳100

There’s really not much to explain here if you read the previous chapters. I use Switch
in the expression for the square of the sum in order to save a pair of parentheses, but
we absolutely need parentheses before the minus sign to let the interpreter know that
we want the expression to the left evaluated before the result of the right one gets
subtracted.

The next problem is going to be much more interesting, I promise!
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Problem 7 – 10001st prime
Problem 7 deals with prime numbers, and that’s the perfect opportunity to build a prime
sieve function, because we’ll need that over and over again for different PE problems.

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime
is 13.

What is the 10001st prime number?

I use the ”classic” Sieve of Eratosthenes to solve this, because despite its simplicity it’s
still one of the fastest algorithms for small prime numbers. Even solving Problem 10
with it (the sum of the first two million primes) takes just 65 milliseconds on my laptop.

And this is my Implementation of it in the following solution (barely counts as a one‐
liner):

{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄(⍸⍵)[10001]}0 1,(⍵-2)⍴1 0}115000

I set the limit for the sieve to 115000, because it can be shown that the nth prime is
guaranteed to be less than n(logn+log logn), which calculates to 114319 for n=10001.

I think a good way to start discussing this is reducing the function to the actual prime
sieve. I’ll also lower the limit to 100:

{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍸⍵}0 1,(⍵-2)⍴1 0}100
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

You can see that I use two nested functions. The outer one gets the upper limit as its
right argument, then it uses 0 1,(⍵-2)⍴1 0 to create the initial boolean list for the
sieve. In the first expression the limit is stored in n to make it accessible in the inner
function without needing to pass is directly as a left or right argument.

Hint: When you use nested functions, it is important to know that ⍺ and ⍵ are com‐
pletely independent in both, although they share the same name/symbol.

0 1 are the first elements of the list (because 1 isn’t prime, but 2 is), and to that I append
(⍵-2)⍴1 0. This uses Shape (⍴) to create a list of ⍵-2 copies of 1 0 like so:

10⍴1 0
1 0 1 0 1 0 1 0 1 0

29

https://projecteuler.net/problem=7
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes


I do this to save one run of the sieve where it marks all even numbers except 2 as
non‐prime, so we can limit the inner function to odd numbers. This speeds up the
sieve function by 40‐50% in my experience. If the input of Shape is a list, and the left
argument is longer than this, it will continue appending to the list until the shape is full.
Or vice versa, if the left argument is smaller, the list will be truncated accordingly:

10⍴⍳3
1 2 3 1 2 3 1 2 3 1

4⍴⍳10
1 2 3 4

You can also use Shape to create n‐dimensional arrays. The same rules apply regarding
fill and truncate:

3 5⍴⍳20
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

3 5⍴⍳3
1 2 3 1 2
3 1 2 3 1
2 3 1 2 3

The result in our case is a list of n elements representing every number up to the limit,
with the first one being 0 (for non‐prime) while all odd numbers except 2 are currently
assumed to be prime:

{0 1,(⍵-2)⍴1 0}100
0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ...

The inner function gets this as its right argument and 3 as its left argument, being the
first number for the sieving algorithm to work on. The function body looks like this:

{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍸⍵}

The function consists of an if...then...else guard which follows the SoE procedure apart
from checking if the new value for ⍺ has already been cancelled, but is limited to odd
numbers, which allows us to increase ⍺ by 2 in every iteration.
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We first check with n≥⍺×⍺ if ⍺ is smaller than the square root of n. While that evaluates
to true, the following recursive block gets executed:

(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵

The expression to the right of ∇, which will be the input for the next iteration, is the one
responsible for setting all multiples of the current value of ⍺ to zero. It uses At to do
this, and (⍺-1)↓⍺×⍳⌊n÷⍺ to build the list of multiples, starting with the square of ⍺,
which is sufficient since all multiples below that have already been cancelled in previous
iterations.

This one took a bit of fiddling around with the numbers, but you can see that it works
as intended:

3{(⍺-1)↓⍺×⍳⌊⍵÷⍺}100
9 12 18 21 24 27 30 33 36 ... 93 96 99

5{(⍺-1)↓⍺×⍳⌊⍵÷⍺}100
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

7{(⍺-1)↓⍺×⍳⌊⍵÷⍺}100
49 56 63 70 77 84 91 98

We have to use Floor (⌊) here to get the floor of n÷⍺, because clearly n ist’n evenly
divisible by every value of ⍺, but ⍳ can only create a list given an integer number.

Furthermore, I use Drop (↓) to drop the leading ⍺-1 elements of the list. This takes
care of removing the numbers up to the square root of ⍺. In general, given a positive
number N to its left, Drop will remove the leading N elements. A negative N will drop
the trailing N elements:

3↓1 2 3 4 5
4 5

¯2↓1 2 3 4 5
1 2 3

The indices for At are delivered by (⍺-1)↓⍺×⍳⌊n÷⍺ and we want At to put a 0 there.
This is now the left argument for the new iteration, the right one is just ⍺+2.
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When ⍺ reaches the square root of n, the recursion stops andWhere is used to return
the indices of the remaining 1s, being the prime numbers. We now have a list of the
prime numbers up to the given limit. To get the 10001st number of this, we just need
to change the last statement from ⍸⍵ to (⍸⍵)[10001], and we are done!
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Problem 8 – Largest product in a series
Problem 8 throws a 1000‐digit number at us, asking for the greatest product of 13
adjacent digits.

The four adjacent digits in the 1000‐digit number that have the greatest product are
9 × 9 × 8 × 9 = 5832.

73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450

Find the thirteen adjacent digits in the 1000‐digit number that have the greatest product.
What is the value of this product?

This is the perfect opportunity to introduce reading input from a file. My solution uses
that and looks like this:

0⍕⌈/13×/⍎¨∊⊃⎕NGET'/path/to/p08.txt'1

To prepare for this, I first copy&pasted the number from the PE website as is to a file
named p08.txt (the name doesn’t matter, of course). If you leave it at this, hence
keeping the line breaks, the solution should work as is.

Dyalog’s standard function to read from text files is ⎕NGET, and you need to specify the
file name including the complete path enclosed in ''. We also usually put a 1 behind
this in order to let ⎕NGET return the lines as boxed strings.
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More importantly, we need to prepend First (⊃) in order to only get the file’s content,
because ⎕NGET also returns some additional info (see below).

As already discussed, First will return the first element of its input. In case of a list of
numbers, this will just be the first number. If the input is partitioned, like the output of
⎕NGET, it will return the first partition:

⎕NGET'/path/to/testfile.txt'1
┌──────────────┬───────────┬──┐
│┌────────────┐│UTF-8-NOBOM│10│
││Some Content││ │ │
│└────────────┘│ │ │
└──────────────┴───────────┴──┘

⊃⎕NGET'/path/to/testfile.txt'1
┌────────────┐
│Some Content│
└────────────┘

After this, our number is now a list of boxed strings, one for every line in the file. Usually,
that’s fine, but in this case we just want an unsegmented list of all numbers, so we use
Enlist to take care of this:

⊃⎕NGET'/path/to/Euler/p08.txt'1
┌──────────────────────────────────────────────────┬────
│73167176531330624919225119674426574742355349194934│9698 ...
└──────────────────────────────────────────────────┴────

∊⊃⎕NGET'/path/to/Euler/p08.txt'1
731671765313306249192251196744265747423553491949349698 ...

But those are still characters, so we first have to convert them to numbers in order to
do our calculations. For this, we can use Execute (⍎), which is basically the reverse of
Format, and converts strings to numbers. It can also execute APL expressions stored
as a string, hence the name. Don’t forget to append Each to Execute, beacuse we want
every number as a seperate item, not the 1000‐digit number translated as a whole:

⍎¨∊⊃⎕NGET'/path/to/Euler/p08.txt'1
7 3 1 6 7 1 7 6 5 3 1 3 3 0 6 2 4 9 1 9 2 2 5 1 1 9 6 ...

⍎∊⊃⎕NGET'/path/to/Euler/p08.txt'1
7.316717653E999
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To get all products of 13 adjacent digits, we can make use of a nice function called
N‐Wise Reduce. If you put a number N before the operator when using it with Reduce, it
will be applied to all consecutive sublists of length N. As an example, imagine you want
the sums or maxima of all adjacent number pairs in a list. This can be done with 2+/ or
2⌈/ like so:

2+/1 4 8 1 6 5
5 12 9 7 11

2⌈/1 4 8 1 6 5
4 8 8 6 6

In our case, we use 13×/ to get all products of 13 adjacent digits, which of course
results in many of them being zero as there are a lot of zeros in the list:

13×/⍎¨∊⊃⎕NGET'/path/to/p08.txt'1
5000940 0 0 0 0 0 0 0 0 0 0 0 0 0 4199040 4898880 9797760 ...

The last step is to use ⌈/ to get the maximum of all results. But since APL uses scientific
notation for all numbers with more than 10 digits by default, we also need to prepend
0⍕, which converts the result to a string with 0 decimal digits:

2*50
1.125899907E15

0⍕2*50
1125899906842624

There are ways to change this behaviour, but since it doesn’t matter if we get the result
as a number or a string, this is the easiest and quickest way.
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Problem 9 – Special Pythagorean triplet
Pythagorean triplets are the topic of problem 9, and we have to find the one for which
a+ b+ c = 1000.

A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, a2 + b2 = c2

For example, 32 + 42 = 9 + 16 = 25 = 52.

There exists exactly one Pythagorean triplet for which a+ b+ c = 1000. Find the product
abc.

While I know that there are ways to solve this analytically, even with pen&paper in a
few minutes if you know the formula, I decided to play around a bit and implement an
algorithm which creates pythagorean triplets and then use that to find our candidate.
Because it can never hurt to have a notebook of handy algorithms to use for later
problems, right?

The algorithm which I use in tri is an implementation of Dickson’s Method, and it is
used in the worker function below it to find the answer:

tri←{⍵{⍺+⍵[1],⍵[2],+/⍵}¨{⍵,n÷⍵}¨{⍸0=⍵|⍨⍳⌊⍵*÷2}n←2÷⍨⍵×⍵}

{⍺←2⋄+/n←⍵=+/¨tri ⍺:×/∊n/tri ⍺⋄(⍺+2)∇⍵}1000

Please read theWikipedia section on Dickson’s Method if you want to know the details,
I’ll just explainmy implementation of it. But first, let’s see if it works as intended by giving
it 6 as an input parameter to match the value of r in the article:

tri 6
┌───────┬───────┬───────┐
│7 24 25│8 15 17│9 12 15│
└───────┴───────┴───────┘

Apparently, it does! So let’s dissect the function bit by bit. The input to the outer
function is the value of r, which needs to be an even number. We also need the value
of r2

2
, that’s why the first step is to calculate it using 2÷⍨⍵×⍵. I also store this result in

n, because it’s needed again later.

Then the rightmost inner function is used to calculate all ”lower factors” of r2

2
with

⍸0=⍵|⍨⍳⌊⍵*÷2. I used Switch to reverse the arguments of the modulo operator to
save a pair of parentheses, so the actual left argument is ⍳⌊⍵*÷2, a list of all natural
numbers up to the floor of the square root of r2

2
.
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Just like in Problem 1, I now use Where to get the numbers for which the result is 0,
thus being the ”lower factors” of r2

2
. The result is as expected:

{{⍸0=⍵|⍨⍳⌊⍵*÷2}n←2÷⍨⍵×⍵}6
1 2 3

Because we need the facor pairs (each ”lower factor” paired with its corresponding
”higher factor”), the next function takes this list and is used with Each to return a seper‐
ate result for each ”lower factor”. All it does is appending n÷⍵ to each ”lower factor”,
and this is the outcome:

{{⍵,n÷⍵}¨{⍸0=⍵|⍨⍳⌊⍵*÷2}n←2÷⍨⍵×⍵}6
┌────┬───┬───┐
│1 18│2 9│3 6│
└────┴───┴───┘

The last function finally calculates the triplets. It uses this result as its right argument,
and it’s again applied to Each factor pair seperately. The left input is r. This doesn’t
need much explanation, there’s nothing new there. It’s just the calculation of what is
r+ s, r+ t, r+ s+ t in the Wikipedia article. r is our ⍺, and we can just factor this out,
resulting in ⍺+⍵[1],⍵[2],+/⍵.

Now to our worker function:

{⍺←2⋄+/n←⍵=+/¨tri ⍺:×/∊n/tri ⍺⋄(⍺+2)∇⍵}1000

It gets 1000 (the perimeter) as it’s right input and sets ⍺←2 as the initial value for r.
Then the usual if...then...else guard follows, which first evaluates +/n←⍵=+/¨tri ⍺.
This calculates all perimeters of the triplets returned by tri ⍺, again using Each to get
seperate results for each triplet. The list of perimeters is then compared with ⍵ (which
is 1000), resulting in a boolean list with mostly 0s, until the recursion arrives at a value
for r which produces the triplet we are looking for.

The list is stored in n because I need it in the then case as a filter. But because the if
statement can’t make use of a list of results (even if all of them are 0 or 1), I use +/ to
get the sum of all results. Because we know that there is only one triplet which has a
perimeter of 1000, we also know that this sum will always be either 0 or 1, in which
case we have found our result.
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As long as this returns 0, the else case executes the next iterationwith ⍺+2, as Dickson’s
Method only works with even numbers. When the matching triplet is finally found, our
then case comes into play. This executes ×/∊n/tri ⍺, which uses n as the filter for
Replicate to extract the relevant triplet:

{⍺←2⋄+/n←⍵=+/¨tri ⍺:n/tri ⍺⋄(⍺+2)∇⍵}1000
┌───────────┐
│200 375 425│
└───────────┘

Finally, Enlist converts the triplet to a list, and we apply ×/ to get the product abc.
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Problem 10 – Summation of primes
Already at problem 10! And that’s a nice one because we can reuse one of our previous
solutions. We are asked to find the sum of all primes below two million.

The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.

Remember problem 7? I already mentioned there that a simple Sieve of Eratosthenes is
more than fast enough to solve this, and that’s why we can use the exact same function,
only modified to return the sum of the whole list of primes instead of just the 10001st
one:

{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄0⍕+/⍸⍵}0 1,(⍵-2)⍴1 0}2e6

You can refer to problem 7 for a detailed explanation of the function. I’ll just mention
that I used Format with 0⍕ again after the sum, to prevent the interpreter from returing
it in scientific notation.

]runtime "{n←⍵⋄3{n≥⍺×⍺: ... ⋄0⍕+/⍸⍵}0 1,(⍵-2)⍴1 0}2e6"
* Benchmarking "{n←⍵⋄3{n≥⍺×⍺: ... ⋄0⍕+/⍸⍵}0 1,(⍵-2)⍴1 0}2e6"

(ms)
CPU (avg): 63
Elapsed: 63

Maybe not as fast as the same algorithm would be in C, but still...
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Problem 11 – Largest product in a grid
To solve problem 11 we need to find the largest product of four adjacent numbers in a
20x20 grid in different directions.

In the 20×20 grid below, four numbers along a diagonal line have been marked in red.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

The product of these numbers is 26 × 63 × 78 × 14 = 1788696.

What is the greatest product of four adjacent numbers in the same direction (up, down,
left, right, or diagonally) in the 20×20 grid?

Similar to problem 8, I first copied the grid to a file and then used its contents for my
solution as follows:

g←↑⍎¨⊃⎕NGET'/path/to/p11.txt'1
⌈/(∊4×/g),(∊4×⌿g),∊4×/¨{1 1⍉⍵}¨↑{(⍵↓g)(⍵↓⍉g)(⍵↓⌽g)(⍵↓⍉⌽g)}¨¯1+⍳17

The challenging part here was to find a way to get the products in the diagonals, as
calculating them for the rows and columns is easy. But let’s begin...

After pasting the grid in a file named p11.txt, I used ⎕NGET in the same fashion as in
problem 8, again prepending First to only give me the contents. This, as usual, results
in a segmented list with each segment containing one line of the file:
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⊃⎕NGET'/path/to/p11.txt' 1
┌───────────────────────────────────────────────────────────┬─────
│08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08│49 49 ...
└───────────────────────────────────────────────────────────┴─────

Then I applied Execute to Each segment, resulting in a segmented list of numbers. To
remove the segmentation and convert the list to a tabe, we can useMix, the monadic
form of Take (↑), which removes the segmentation and inserts each segment as a row
in a matrix, filling up spaces with 0s as needed (which is not the case with our grid):

(1 2)(3 4 5)(6 7 8 9)
┌───┬─────┬───────┐
│1 2│3 4 5│6 7 8 9│
└───┴─────┴───────┘

↑(1 2)(3 4 5)(6 7 8 9)
1 2 0 0
3 4 5 0
6 7 8 9

↑⍎¨⊃⎕NGET'/path/to/p11.txt' 1
8 2 22 97 38 15 0 40 0 75

49 49 99 40 17 81 18 57 60 87
81 49 31 73 55 79 14 29 93 71 ...
52 70 95 23 4 60 11 42 69 24
22 31 16 71 51 67 63 89 41 92
...

Finally, I use g← to store the resulting grid in a variable. Now, to get a list of the prod‐
ucts of 4 adjacent numbers in the rows or columns, we can just use ∊4×/g or ∊4×⌿g
respectively. See problem 1 for the difference between / and ⌿, but it’s suffice to say
that / operates on the rows, and ⌿ on the columns.

So the first part of the final line in the solution does just that, catenating both lists and
applying ⌈/ to get the maximum. But apparently, the product we are looking for sits on
one of the diagonals, so we need to dig deeper.

There is no direct way to apply functions or operators to all diagonals, but at least we
can make use of Dyadic transpose with 1 1⍉. Transpose in its monadic form will flip a
matrix.
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Its dyadic form is normally only relevant for multi‐dimensional arrays, so I won’t cover
that in detail here. But the special case 1 1⍉ can be used to extract the main diagonal
of a matrix:

3 3⍴⍳9
1 2 3
4 5 6
7 8 9

⍉3 3⍴⍳9
1 4 7
2 5 8
3 6 9

1 1⍉3 3⍴⍳9
1 5 9

That helps, but it can only return the main diagonal starting from the top left corner. In
order to get all diagonals, I use a function which continously drops rows and columns
from the matrix until only four are left, which shifts the origin for the main diagonal
accordingly. By default Drop removes rows. To let it work on the columns, we can
either use Transpose, which is what I did, or specify “rank 2“ by appending [2] to Drop.

Let’s see how that works with a little example:

⎕←mat←4 4⍴⍳16
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1↓mat
5 6 7 8
9 10 11 12

13 14 15 16

1↓⍉mat
2 6 10 14
3 7 11 15
4 8 12 16
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1↓[2]mat
2 3 4
6 7 8

10 11 12
14 15 16

Instead of dropping a fixed number of rows or columns, I apply the fuction with Each
to ¯1+⍳17, so it drops 0 to 16 rows or comlums. That is sufficient, because dropping
more would result in diagonals with 3 or less elements, and we don’t need those.

In the function itself, I append four terms: (⍵↓g)(⍵↓⍉g)(⍵↓⌽g)(⍵↓⍉⌽g). The first
two are the NW‐SE diagonals, being the ones below the main diagonal and those above,
respectively. To get the NE‐SW direction, we just need to do the same with the revered
matrix which is ⌽g. By chaining them without Catenate and enclosed in parentheses,
the result will be segmented, which will help when we apply the next function with
Each in a minute:

(1 2 3)(4 5 6)(7 8 9)
┌─────┬─────┬─────┐
│1 2 3│4 5 6│7 8 9│
└─────┴─────┴─────┘

I won’t show the result of this here, as it wouldn’t fit on a page in any readable way, but
believe me (or try it our for yourself), that after applyingMix (↑)to the result, we have a
segmented ”list” of matrices with the numbers of rows or colums reduced accordingly.

Now it’s finally time to apply {1 1⍉⍵} to Each of those segments to get all the diagonals
extracted, and 4×/¨ takes care of calcultaing the product for Each one. Finally, it’s just
a matter of using Enlist on all seperate result lists to remove any segmentation and we
are done.
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Problem 12 – Highly divisible triangular number
Problem 12 is another one which allows us to make use of a previous solution.

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th
triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Let us list the factors of the first seven triangle numbers:

1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28

We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?

Remember the search for the largest prime factor in problem 3? If we adjust the solution
for that to not only return the largest, but all prime factors, we have an easy and fast
way to calculate the number of divisors using the Divisor function. There is an easy way
to find the number of divisors for small numbers by using {+/0=(⍳⍵)|⍵}, but that will
fail due to filling up the memory when we need to investigate many large numbers like
in this particular problem. Hence, my solution makes use of the adapted prime factor
function and looks like this:

pf←{⍺←3⋄0=2|⊃⍵:⍺∇(÷∘2@1)⍵,2⋄0=⍺|⊃⍵:⍺∇(÷∘⍺@1)⍵,⍺⋄(⍺×⍺)<⊃⍵:(⍺+2)∇⍵⋄⍵~1}
ndivs←{{×/1++⌿⍵∘.∊∪⍵}pf ⍵}

{500>ndivs +/⍳⍵:∇⍵+1⋄+/⍳⍵}1

Please refer to problem 3 for the explanation of pf. It’s basically unchanged except
for the last statement, which now returns ⍵~1. This uses Without (~) to return the
complete list of prime factors without 1. It’s kind of a ”dirty” workaround because my
function would need yet another guard to check if either the last prime factor is 2 or
if we encounter the square of the last prime factor in the final iteration. In those cases
the function will again divide the last factor by either 2 or ⍺ and ⊃⍵ becomes 1.

Two examples would be 1024 (or any power of 2 for that matter) and 121. In the first
case, we can keep on dividing 1024 by 2 until we arrive at 2. At this point, the algorithm
could stop, but the first guard still sees that ⊃⍵ is divisible by 2 and does another run.
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In the case of 121, ⍺ will be raised by 2 until it arrives at 11, which divides 121. The
result is again 11, so it will divide by ⍺ another time.

This is just a minor inconvenience, the resulting listWithout 1 is still the correct prime
factorization.

But let’s quickly see howWithout works:

3 4 2 5 7 9 8~1 2 3
4 5 7 9 8

As expected, the result is the left argument without all matching members of the right
argument. Now to get from the prime factors to the number of divisors, we can make
use of the Divisor function which states that the number of divisors is equal to the
product of all prime factor exponents increased by 1.

But how do we calculate the exponents? We just need to count how often a prime
factor is occuring in the list delivered by pf. For example, the number 10080 has 72
divisors. Let’s see its prime factorization:

pf 10080
7 2 2 2 2 2 3 3 5

This shows that 10080 = 25 · 32 · 51 · 71 with the exponents 5, 2, 1 and 1. The number
of divisors should be (5+1) · (2+1) · (1+1) · (1+1) = 6 · 3 · 2 · 2, and that is indeed 72.

Here is where the ndivs function comes into play. It takes the list of prime factors and
uses the Divisor function to calculate the number of divisors. To get the exponents,
being the count of every factor, we can again make use of Outer Product and also learn
about the dyadic use of ∊, which is Membership. Given a list to its left, it will return
a boolean result with 1s on all positions where an element of the right argument is a
member of the list:

1 2 3 4 5 6 7 8 9∊3 4 5
0 0 1 1 1 0 0 0 0
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When we combine this with Outer Product, we get a seperate result for every member
of the right argument as a column (we might as well swap the arguments and the result
will be in rows instead):

1 2 3 4 5 6 7 8 9∘.∊3 4 5
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

3 4 5∘.∊1 2 3 4 5 6 7 8 9
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

To apply this concept to our solution, we can take the prime factorization and use the
Unique elements of it as the right argument:

pf 10080
7 2 2 2 2 2 3 3 5

∪pf 10080
7 2 3 5

{⍵∘.∊∪⍵}pf 10080
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

The first column shows the occurences of 7, the second column those of 2 etc. And we
are nearly there! We just need to add the 1s in all columns to get the count of every
prime factor.
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This is easily done with +⌿, using Reduce First to work on the columns (see problem 1).
The final steps are adding 1 to this and then applying ×/ to get the product:

{+⌿⍵∘.∊∪⍵}pf 10080
1 5 2 1

{×/1++⌿⍵∘.∊∪⍵}pf 10080
72

We now have all we need to solve this, we just need a worker function. Mine looks like
this:

{500>ndivs +/⍳⍵:∇⍵+1⋄+/⍳⍵}1

This uses the convenient fact that you can easily get the nth triangular number in APL
with +/⍳n, because it’s just the sum of the first n natural numbers. Or you can use
Scan instead of Reduce to get the whole sequence up to the nth triangular number:

+/⍳10
55

+\⍳10
1 3 6 10 15 21 28 36 45 55

The function now uses this and checks with ndivs if the number of divisors is less
than 500. As long as this evaluates to true, ⍵ is raised by 1 and the function calls itself
with that new input. When the number is finally found, it is returned with +/⍳⍵.
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Problem 13 – Large sum
To solve problem 13, we can again make use of file input.

Work out the first ten digits of the sum of the following one‐hundred 50‐digit numbers.

37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
...

This is easy to solve because we just need the first 10 digits and can just add the num‐
bers as they are, despite Dyalog APL not supporting that many digits without scientific
notation out of the box.

10↑1↓0⍕+/⍎¨⊃⎕NGET'/path/to/p13.txt'1

As usual, I directy pasted the list of numbers from the PE website into a text file which I
named p13.txt. Then, after using ⎕NGET in the usual manner, we have a segmented
list of the numbers, still represented as strings. To sum them, we first need to convert
Each to a number using Execute. After this, we can use +/ to get the sum:

⊃⎕NGET'/path/to/p13.txt'1
┌──────────────────────────────────────────────────┬───
│37107287533902102798797998220837590246510135740250│463 ...
└──────────────────────────────────────────────────┴───

+/⍎¨⊃⎕NGET'/path/to/p13.txt' 1
5.53737623E51

And to get rid of the scientific notation, we can apply Format with 0 as explained pre‐
viously:

0⍕+/⍎¨⊃⎕NGET'/path/to/p13.txt' 1
5537376230390877____________________________________

As we can see, the digits that go beyond the currently set precision are just represented
by underscores, but that’s not an issue. You can either copy the first 10 digits of that
and call it a day, or you can use 10↑1↓ to extract them. We need to drop the first
character, because when using 0⍕, a space is inserted at the beginning.
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Problem 14 – Longest Collatz sequence
Problem 14 deals with the Collatz conjecture:

The following iterative sequence is defined for the set of positive integers:

n → n/2 (n is even)
n → 3n + 1 (n is odd)

Using the rule above and starting with 13, we generate the following sequence:

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms.
Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers
finish at 1.

Which starting number, under one million, produces the longest chain?

NOTE: Once the chain starts the terms are allowed to go above one million.

My solution to that is nothing special and uses a cache of previously calculated lengths
to speed th process up a bit:

l←⍬
{⍸⍵=⌈/⍵}{n←⊃⌽⍵⋄n=1:l,←≢⍵⋄n<⊃⍵:l,←¯1+(≢⍵)+l[n]⋄0=2|n:∇⍵,n÷2⋄∇⍵,1+3×n}¨⍳1e6

However, I must admit that even with caching, calculating all chain lengths takes about
9 seconds on my laptop. But that’s ok, we are well under the time limit of 1 minute that
PE suggests for considering a solution being valid.

The first line initializes the cache as an empty list and stores that in lwith l←⍬. Zilde (⍬)
is just that, an empty numeric vector. Then comes the actual worker function which cal‐
culates all chain lengths for Each number in ⍳1e6. I should have used 999999 instead,
but then the function wouldn’t fit in one line. Priorities.

In there, I first store the current last element of the sequence – which I get with First
of the Reverse – in n. Then follows a guard which checks if n=1. If that is the case,
the current sequence couldn’t make use of the cache but is finished, and its length gets
appended to l. To get the length of a list, we use Tally (≢) like so:

≢13 40 20 10 5 16 8 4 2 1
10

{⍵,+/¯2↑⍵}⍣{10=≢⍺}1 2
1 2 3 5 8 13 21 34 55 89
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You can see that I used l,←≢⍵ to append and store the result at the same time. This is
just the short version of l←l,≢⍵ and similar to using += in C:

a←3
a+←2
a

5

a,←6
a

5 6

The next guard uses the cache list. n<⊃⍵ checks if we arrived at a number smaller than
the start value (e.g. 10 in the sequence starting with 13). In this case, we know that we
already calculated the chain length starting with that number, so we can just add this
knwon value (which is stored in l[n]) to the length of the current sequence. But we
need to subtract 1, or else we would account for the current n twice.

If both guards evaluate to false, the sequence needs to be continued, and this hap‐
pens with 0=2|n:∇⍵,n÷2⋄∇⍵,1+3×n, thus appending n÷2 or 1+3×n to the current
sequence – depending on the result of 2|n – and calling the function again with that
input.

After all chain lengths have been calculated, it’s just a matter of using {⍸⍵=⌈/⍵} to
find the index of the longest chain, being the starting number which produced it and
also the solution for this problem.
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Problem 15 – Lattice paths
Time for a breather, and problem 15 delivers!

Starting in the top left corner of a 2×2 grid, and only being able to move to the right and
down, there are exactly 6 routes to the bottom right corner.

How many such routes are there through a 20×20 grid?

Fortunately, this boild down to a simple ”n choose k” problem, because given an NxN
grid, there are ”2N choose N” possible paths when only being able to move down or to
the right. And because Dyalog APL has a built in function for that, the solution is just...

0⍕20!40

...again using Format to get rid of the scientific notation.

The Factorial/Binomial operator (!) does just what its name implies: Used monadically,
it returns the factorial of its input. Dyadically, it calculates ”n choose k” with k!n:

!9
362880

2!10
45

And that already concludes this chapter.
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Problem 16 – Power digit sum
Problem 16 demands a bit of creativity, because we will need to get way beyond APLs
integer range:

215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.

What is the sum of the digits of the number 21000?

I didn’t check if there is a big integer library for Dyalog APL, because I like to work
with what is there by default, which will also help when you use other dialects of the
language. My solution uses a list to store the digits and looks like this:

{+/{{0<+/n←⌊⍵÷10:(10|⍵)+1⌽n⋄⍵}⍵×2}⍣⍵⊢(301⍴0),1}1000

Phew, three nested functions and the Power Operator mixed together to form a cryptic
one liner? Welcome to APL! Just kidding... it’s my solution (not the best or only one,
for sure), it works and it finishes in 15 milliseconds. That’s where I stopped trying to
optimize it any further. So let’s take it apart step by step from the oudside.

The input to the outermost function is 1000 (or in general, the power of 2 which we
want to calculate). The next function takes this as the parameter for the Power operator,
so we know that it loops a 1000 times. The input to the function is (301⍴0),1, so 301
zeros and a 1 appended to that. This is the initial list, representing 20 = 1, which will
store our digits. We know the needed length of the list, because by using our favourite
calculator or 2*1000 in APL, we can see that 21000 is approximately 1 · 10301, which has
302 digits. I prepended +/ to the left of this function in order to return the sum of the
digits.

Going one step further inside, we see that the innermost function gets ⍵×2 as its argu‐
ment, which is the current list of digits representing 2n multiplied by 2, being 2n+1. But
here we face the problem that any digit greater than 4 will result in a 2‐digit number at
that position in the list:

0 5 1 2×2
0 10 2 4

To convert the list to single digits, we need to take one more step, and that’s the task of
the innermost function. It first checks if the list contains numbers greater than 9 with
0<+/n←⌊⍵÷10. So we divide the list by 10 and take the floor of that. For any number
up to 9, this will result in 0, so using +/ to sum up all results and checking if that is
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greater than 0 is the indicator we need. I also store the result of the floored division in
n because I need it again in the next expression.

If we don’t have any digis greater than 9, the list is just returned unchanged by the last
statement ⍵. But if we do, ∇(10|⍵)+1⌽n⋄⍵ gets executed, which uses the sum of
10|⍵ and 1⌽n to shift the ”greater than 10”‐part one digit to the left and keeing only
the remainder of ”divided by 10” at the current position.

This uses Rotate, the dyadic form of Reverse to shift the digits. Given a positive number
N to its left, Rotate will – as the name suggests – rotate the contents of its input by N
steps to the left. A negative N will rotate to the right:

1⌽1 2 3 4 5
2 3 4 5 1

¯1⌽1 2 3 4 5
5 1 2 3 4

As you can see, it is really a rotation where the elements that ”fall over” get appended to
the other end. This isn’t a problem in our case as there are only zeros which get rotated
to the other end until the function has finished working, and zeros have no influence
on the sum which is used to build the ”corrected” list. Now let’s see if this works as
intended using our little example from above:

{0<+/n←⌊⍵÷10:(10|⍵)+1⌽n⋄⍵}0 5 1 2
0 5 1 2

{0<+/n←⌊⍵÷10:(10|⍵)+1⌽n⋄⍵}0 5 1 2×2
1 0 2 4

It does! And that’s all there is to it. We just repeat that a thousand times to get to 21000

and there is our result (short of summing the digits):

{{{0<+/n←⌊⍵÷10:(10|⍵)+1⌽n⋄⍵}⍵×2}⍣⍵⊢(301⍴0),1}1000
1 0 7 1 5 0 8 6 0 7 1 8 6 2 6 7 3 2 0 9 4 8 4 2 5 0 4 9 0 6 0 0 0 1 8 1
0 5 6 1 4 0 4 8 1 1 7 0 5 5 3 3 6 0 7 4 4 3 7 5 0 3 8 8 3 7 0 3 5 1 0 5
1 1 2 4 9 3 6 1 2 2 4 9 3 1 9 8 3 7 8 8 1 5 6 9 5 8 5 8 1 2 7 5 9 4 6 7
2 9 1 7 5 5 3 1 4 6 8 2 5 1 8 7 1 4 5 2 8 5 6 9 2 3 1 4 0 4 3 5 9 8 4 5
7 7 5 7 4 6 9 8 5 7 4 8 0 3 9 3 4 5 6 7 7 7 4 8 2 4 2 3 0 9 8 5 4 2 1 0
7 4 6 0 5 0 6 2 3 7 1 1 4 1 8 7 7 9 5 4 1 8 2 1 5 3 0 4 6 4 7 4 9 8 3 5
8 1 9 4 1 2 6 7 3 9 8 7 6 7 5 5 9 1 6 5 5 4 3 9 4 6 0 7 7 0 6 2 9 1 4 5
7 1 1 9 6 4 7 7 6 8 6 5 4 2 1 6 7 6 6 0 4 2 9 8 3 1 6 5 2 6 2 4 3 8 6 8
3 7 2 0 5 6 6 8 0 6 9 3 7 6
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Bonus: If you want to make this a bit more universal, you can work with a dynamic list
length, calculated with ⌊10⍟2*⍵. This uses the floor of the base‐10 logarithm of 2n to
get the number of digits minus 1 (because we still need to append 1 to this). Adjusting
the function accordingly works fine:

{{{0<+/n←⌊⍵÷10:(10|⍵)+1⌽n⋄⍵}⍵×2}⍣⍵⊢1,⍨(⌊10⍟2*⍵)⍴0}10
1 0 2 4

{{{0<+/n←⌊⍵÷10:(10|⍵)+1⌽n⋄⍵}⍵×2}⍣⍵⊢1,⍨(⌊10⍟2*⍵)⍴0}20
1 0 4 8 5 7 6

{{{0<+/n←⌊⍵÷10:(10|⍵)+1⌽n⋄⍵}⍵×2}⍣⍵⊢1,⍨(⌊10⍟2*⍵)⍴0}50
1 1 2 5 8 9 9 9 0 6 8 4 2 6 2 4

And with a few further adjustments, we can use it not just for powers of 2 but for any
base number and exponent:

tothepowerof←{⍺{{0<+/n←⌊⍵÷10:∇(10|⍵)+1⌽n⋄⍵}⍵×⍺}⍣⍵⊢1,⍨(⌊10⍟⍺*⍵)⍴0}

25 tothepowerof 10
9 5 3 6 7 4 3 1 6 4 0 6 2 5
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Problem 17 – Number letter counts
Problem 17 is a different beast. It asks us to calculate the number of letters needed to
write out all numbers from 1 to 1000 in words:

If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3
+ 3 + 5 + 4 + 4 = 19 letters used in total.

If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how
many letters would be used?

NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty‐two)
contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of ”and”
when writing out numbers is in compliance with British usage.

I use a solution similar to what others have done and it looks like this:

ones←3 3 5 4 4 3 5 5 4
teens←3 6 6 8 8 7 7 9 8 8
tens←6 6 5 5 5 7 6 6
+/11,(ones+7),(∊(ones+10)∘.,n),n←ones,teens,tens,∊tens∘.+ones

In the first step, three lists are created containing the letter counts of the
ones (”one”, ”two”, ”three”... ”nine”)
teens (”ten”, ”eleven”, ”twelve”... ”nineteen”) and
tens (”twenty”, ”thirty”, ”forty” ... ”ninety”).

Then it’s just a matter of combining them in the right amounts. For all numbers below
100, we need one of each, as well as all combinations of tens and ones which we
can easily get with Outer Product using ∊tens∘.+ones. This is also needed for all
”hundreds”, so I store that in n, and combine it with Outer Product to ones+10, which
takes care of all ”X hundred and”.

For the even hundreds (”one hundred”, ”two hundred”...) we also need ones+7, and
finally we have to account for ”one thusand” by adding 11. All that’s left to do is +/ing
it all together.
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Problem 18 – Maximum path sum I
Problem 18is a classic, and although it can be solved using brute force, there is a well
known algorithm that speeds it up considerably and is absolutely needed for the similar
(but much larger) problem 67.

By starting at the top of the triangle below and moving to adjacent numbers on the row
below, the maximum total from top to bottom is 23.

3
7 4
2 4 6

8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

75
95 64

17 47 82
18 35 87 10

20 04 82 47 65
19 01 23 75 03 34

88 02 77 73 07 63 67
99 65 04 28 06 16 70 92

41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29

53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57

91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31

04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every
route. However, Problem 67, is the same challenge with a triangle containing one‐hundred
rows; it cannot be solved by brute force, and requires a clever method! ;o)

This problem is the perfect one to introduce the option of applying functions with
Reduce/Fold. We already did that a thousand times with +/, but you can also use it
perfectly fine with your own functions. My following solution makes use of that:

tri←⍎¨⊃⎕NGET'/path/to/p18.txt'1

{⍺+2⌈/⍵}/tri

After having pasted the triangle in p18.txt, I use ⎕NGET to get a segmented list of
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strings, and then Execute with Each to convert those to numbers, which results in this:

tri
┌──┬─────┬────────┬───────────┬─────────────┬───────────────┬───────
│75│95 64│17 47 82│18 35 87 10│20 4 82 47 65│19 1 23 75 3 34│88 2 77 ...
└──┴─────┴────────┴───────────┴─────────────┴───────────────┴───────

And now Reduce makes it possible to use a tiny function to solve this problem (and
problem 67 as well), but how does it work? Let’s take the smaller triangle from the
example, which makes it easier to show the process:

tri←(3)(7 4)(2 4 6)(8 5 9 3)
tri

┌─┬───┬─────┬───────┐
│3│7 4│2 4 6│8 5 9 3│
└─┴───┴─────┴───────┘

As you might know, the key to solve this efficiently is to go from the bottom up, calcu‐
lating the pairwise maxima of the last row and adding this result to the second‐to‐last
row. This then becomes the new last row and the process repeats until we arrive at the
top, where the final sum is also the maximum path sum.

I already showed in an eralier chapter that we can use 2⌈/ to get the pairwise maxima
of a list:

2⌈/8 5 9 3
8 9 9

And the ”secret” here is that by using Reduce, which inserts the function between all
segments, ⍵ will be the bottom row and ⍺ the one before it. There is a nice way to
illustrate that by just applying the function {⍺⍵} with Reduce:

{⍺⍵}/tri
┌─────────────────────────┐
│┌─┬─────────────────────┐│
││3│┌───┬───────────────┐││
││ ││7 4│┌─────┬───────┐│││
││ ││ ││2 4 6│8 5 9 3││││
││ ││ │└─────┴───────┘│││
││ │└───┴───────────────┘││
│└─┴─────────────────────┘│
└─────────────────────────┘
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This shows through boxing that in the first step, the function uses 2 4 6 as ⍺ and 8 5
9 3 as ⍵. In the next iteration, the restult of this is the new ⍵, while ⍺ is now the next
row before the former, being 7 4.

It also shows another important aspect: Dyalog APL does a ”right fold”, meaning that
the iteration begins at the end of the list. So if you plan to apply a function using Reduce,
make sure to have your list ordered in a way that the first elements to work on are the
last ones in the list.

And that’s just what we needed. An algorithm that works it’s way from bottom to top
(or in this case from right to left) through the rows of the triangle:

{⍺+2⌈/⍵}/tri
┌──┐
│23│
└──┘

If the leftover boxing is an issue, just prepend Enlist to the function, which will take care
of that.
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Problem 19 – Counting Sundays
To solve problem 19, we need to find out how may Sundays fell on the first of the
month between 01/01/1901 and 12/31/2000.

You are given the following information, but you may prefer to do some research for your‐
self.

• 1 Jan 1900 was a Monday.

• Thirty days has September,
April, June and November.
All the rest have thirty‐one,
Saving February alone,
Which has twenty‐eight, rain or shine.
And on leap years, twenty‐nine.

• A leap year occurs on any year evenly divisible by 4, but not on a century unless it
is divisible by 400.

How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901
to 31 Dec 2000)?

The last clue doesn’t apply for this time range, as the only century is 2000 which is
divisible by 400, so we can just use the single rule that every year divisible by 4 is a
leap year. My solution uses that, and the additional information that 12/31/1900 was
a Monday:

m←31 28 31 30 31 30 31 31 30 31 30 31

{+/7=⊃¨(⍵/⍳≢⍵)⊆(+/⍵)⍴1⌽⍳7}∊{0=4|⍵:(29@2)m⋄m}¨1900+⍳100

The solution builds a calendar for the whole century and only at the end counts the
number of Sundays which fell on the first of the month. It’s actually easier to do it this
way than to write a function which only calculates the days on the first of the month.

But the first step is to make a list of the lentghs of the months in a normal year and store
that in a variable. The rightmost function then gets applied to Each year and returns
either the list unchanged or uses At to replace the length of Febuary with 29 if it is a
leap year (which we check with 0=4|⍵). After this is done for the whole century, we
can remove the segmentation with Enlist.

The second function does the actual work of creating the calendar. Starting from the
right, I first create a continous list of the day numbers (using 1 forMonday, 2 for Tuesday
etc.) for the whole century. Because 01/01/1901 was a Tuesday, the list needs to start
with 2 and we can achieve that with Rotate using 1⌽⍳7. This represents the first week
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of 1901, and to extend that over the whole century, we can just use Shape to fill the
list continously. The length of the list (being the number of days in the whole century)
is +/⍵. To check if everything worked correctly, we can examine the last element,
representing 31/12/2000, which was a Sunday:

{(+/⍵)⍴1⌽⍳7}∊{0=4|⍵:(29@2)m⋄m}¨1900+⍳100
2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 ...

¯1↑{(+/⍵)⍴1⌽⍳7}∊{0=4|⍵:(29@2)m⋄m}¨1900+⍳100
7

That seems to be working! But now we need to partition this, in order to identify the
seperate months. And Partition (⊆) is indeed the tool we can make use of. You pass the
list to be partitioned as the right argument, and a ”partitioning rule” as the left argument.
The lenghths of both must match. You can then use ascending numbers to specify the
partitions, using as many terms of the same number as you want the corresponding
partition to have members. Clear as mud, isn’t it? Let’s see some examples:

1 1 1 2 2 2⊆1 2 3 4 5 6
┌─────┬─────┐
│1 2 3│4 5 6│
└─────┴─────┘

1 1 2 2 3 3⊆1 2 3 4 5 6
┌───┬───┬───┐
│1 2│3 4│5 6│
└───┴───┴───┘

1 2 2 3 3 3⊆1 2 3 4 5 6
┌─┬───┬─────┐
│1│2 3│4 5 6│
└─┴───┴─────┘

You don’t need to use 1, 2, 3 etc. or even adjacent numbers, as long as they are as‐
cending, but doing so makes it a bit easier to grasp. Here is an example using arbitrary
numbers.

24 24 78 95 95 1235⊆1 2 3 4 5 6
┌───┬─┬───┬─┐
│1 2│3│4 5│6│
└───┴─┴───┴─┘
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You can also use zeros to leave out the corresponding elements:

1 1 0 0 2 2⊆1 2 3 4 5 6
┌───┬───┐
│1 2│5 6│
└───┴───┘

Now back to our case. I use (⍵/⍳≢⍵) as the ”partitioning rule”. This uses Replicate
to create ⍵ copies of ⍳≢⍵. The latter being a list of natural numbers from 1 to 1200,
because we have 1200 months in the century and ⍵ is the list of all month lengths.
Replicate then uses ⍵ to make as much copies of each number as there are days in each
month. So we start with 31 ones, then 28 twos, 31 threes and so on:

{⍵/⍳≢⍵}∊{0=4|⍵:(29@2)m⋄m}¨1900+⍳100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 4 ...

And this is just what we need to split the continous list of days back into partitions of
month lengths:

{(⍵/⍳≢⍵)⊆(+/⍵)⍴1⌽⍳7}∊{0=4|⍵:(29@2)m⋄m}¨1900+⍳100
┌─────────────────────────────────────────────────────────────┬─────
│2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4│5 6 7 ...
└─────────────────────────────────────────────────────────────┴─────

The last step is then to apply +/7=⊃ with Each to this, checking if the first element of
each month is a 7, and finally summing everything up.

{7=⊃¨(⍵/⍳≢⍵)⊆(+/⍵)⍴1⌽⍳7}∊{0=4|⍵:(29@2)m⋄m}¨1900+⍳100
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 ...

I know that Partition isn’t the easiest operator to understand, but you’ll quickly get the
hang of it, for sure.
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Problem 20 – Factorial digit sum
Similar to problem 16, I used the list representation of big numbers in problem 20, which
deals with a large factorial.

n! means n × (n − 1) × ... × 3 × 2 × 1

For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the
number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.

Find the sum of the digits in the number 100!

As 100! has 158 digits, it’s far too big to be handled without scientific notation in
Dyalog APL out of the box. But we did most of the work already for problem 16. Also,
I use Reduce to create the factorial loop similar to problem 18. And here is my solution,
combining both approaches:

{+/∊{{0<+/n←⌊⍵÷10:∇(10|⍵)+1⌽n⋄⍵}⍵×⍺}/(⍳⍵),⊂((⌊10⍟!⍵)⍴0),1}100

The argument for the outermost function is the factorial which we want to calculate,
so 100 in this case. Then, similar to problem 16, a list of the needed length is created
which consists of zeros and a single 1 at the last position. The needed length for shape
is calculated with ⌊10⍟!⍵, using the floor of the base‐10 logarithm of !⍵ to get the
number of digits of minus 1.

This list is then boxed using Enclose (⊂), and will be the first instance of ⍵ for Reduce
(please refer to problem 18 for the details on how this works). Our list of arguments for
⍺ is just ⍳⍵. And a function applied to this with Reduce will work in this fashion:

{{⍺ ⍵}/(⍳⍵),⊂((⌊10⍟!⍵)⍴0),1}6
┌─────────────────────────────┐
│┌─┬─────────────────────────┐│
││1│┌─┬─────────────────────┐││
││ ││2│┌─┬─────────────────┐│││
││ ││ ││3│┌─┬─────────────┐││││
││ ││ ││ ││4│┌─┬─────────┐│││││
││ ││ ││ ││ ││5│┌─┬─────┐││││││
││ ││ ││ ││ ││ ││6│0 0 1│││││││
││ ││ ││ ││ ││ │└─┴─────┘││││││
││ ││ ││ ││ │└─┴─────────┘│││││
││ ││ ││ │└─┴─────────────┘││││
││ ││ │└─┴─────────────────┘│││
││ │└─┴─────────────────────┘││
│└─┴─────────────────────────┘│
└─────────────────────────────┘
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That’s just what we need: Multiplying the list with all numbers decreasing from the
upper limit to 1. The rest of the function works exactly as explained in problem 16, so
please refer to that chapter for details. The only difference here is that I need to apply
Enlist to the result in order to get rid of the boxing. I’ll just show the result before we
apply +/ for the sum:

{∊{{0<+/n←⌊⍵÷10:∇(10|⍵)+1⌽n⋄⍵}⍵×⍺}/(⍳⍵),⊂((⌊10⍟!⍵)⍴0),1}100
9 3 3 2 6 2 1 5 4 4 3 9 4 4 1 5 2 6 8 1 6 9 9 2 3 8 8 5 6 2 6 6 7
0 0 4 9 0 7 1 5 9 6 8 2 6 4 3 8 1 6 2 1 4 6 8 5 9 2 9 6 3 8 9 5 2
1 7 5 9 9 9 9 3 2 2 9 9 1 5 6 0 8 9 4 1 4 6 3 9 7 6 1 5 6 5 1 8 2
8 6 2 5 3 6 9 7 9 2 0 8 2 7 2 2 3 7 5 8 2 5 1 1 8 5 2 1 0 9 1 6 8
6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

And to show that the ”dynamic” calculation of the list length works fine, here is the
result of the same function calculating 10!

{∊{{0<+/n←⌊⍵÷10:∇(10|⍵)+1⌽n⋄⍵}⍵×⍺}/(⍳⍵),⊂((⌊10⍟!⍵)⍴0),1}10
3 6 2 8 8 0 0

So while it may be a bit more work initially, it always pays off to design a solution as
universal as possible. You never know when you’ll need it again for a similar task.
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Problem 21 – Amicable numbers
Problem 21 wants us to find the sum of all amicable numbers below 10000:

Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide
evenly into n).

If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b
are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110;
therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) =
220.

Evaluate the sum of all the amicable numbers under 10000.

My solution is pretty straightforward and looks like this:

divsum←{+/¯1↓⍸0=(⍳⍵)|⍵}

+/⍸{(⍵=divsum ds)∧⍵≠ds←divsum ⍵}¨⍳9999

Because we only need to deal with small numbers, I didn’t use prime factorization to get
the sum of the divisors. It’s easier to do with ⍸0=(⍳⍵)|⍵, but we also need to drop
the last element of the result because we are only interested in the proper divisors.
divsum then works as intended:

{¯1↓⍸0=(⍳⍵)|⍵}220
1 2 4 5 10 11 20 22 44 55 110

{+/¯1↓⍸0=(⍳⍵)|⍵}220
284

{+/¯1↓⍸0=(⍳⍵)|⍵}284
220

The worker function then needs to identify all numbers, for which applying divsum
twice cycles back to the number (e.g. the divsum of the divsum of 220 is 220). But we
also need to filter out all perfect numbers, which are equal to the sum of their proper
divisors. To combine both conditions, I use logical And (∧), and I also store the result of
divsum ⍵ in ds because we need that twice and it speeds the function up a bit (and
saves some memory) if we only calculate it once. We can useNot Equal (≠) for the task
of discarding perfect numbers.
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And here is the result short of using +/ to get the sum:

⍸{(⍵=divsum ds)∧⍵≠ds←divsum ⍵}¨⍳9999
220 284 1184 1210 2620 2924 5020 5564 6232 6368
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Problem 22 – Names scores
We can use problem 22 to learn about two new system functions and how to sort lists.

Using names.txt (right click and ’Save Link/Target As...’), a 46K text file containing over five‐
thousand first names, begin by sorting it into alphabetical order. Then working out the
alphabetical value for each name, multiply this value by its alphabetical position in the list
to obtain a name score.

For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15
+ 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938
× 53 = 49714.

What is the total of all the name scores in the file?

{+/⍵×⍳≢⍵}{+/¯64+⎕UCS ⍵}¨{⍵[⍋⍵]}1⌷⎕CSV'/path/to/names.txt'

As the names in the file are comma separated values (CSV), we can use the system
function of the same name to read the contents. Compared to using ⎕NGET, this has
the advantage that the input is partitioned automatically. Also, the double quotes which
enclose all names are removed by default. We would need to take care of both things
manually if we use ⎕NGET. Let’s look at the output of ⎕CSV:

⎕CSV'/path/to/names.txt'
┌────┬────────┬─────┬───────┬─────────┬────────┬─────┬─────┬──
│MARY│PATRICIA│LINDA│BARBARA│ELIZABETH│JENNIFER│MARIA│SUSAN│MA ...
└────┴────────┴─────┴───────┴─────────┴────────┴─────┴─────┴──

That’s just what we want! The next step would be to sort the names. But we first need
to take one extra step, and that is to extract the first row using Index (⌷).

Why that? While it looks just like an ordinary segmented list, it’s actually an array with
one row. You can see this when you apply Shape monadically:

⍴⎕CSV'/path/to/names.txt'
1 5163

This teels us that we have an array with one row and 5163 columns. Given a simple
list, Shape would just return it’s length:

⍴⍳10
10
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But why is that important? It is, because applying functions to this can result in a Rank
Error. Consider this example:

a←1 2 3 4
b←5 6 7 8
c←1 4⍴5 6 7 8

a
1 2 3 4

b
5 6 7 8

c
5 6 7 8

a+b
6 8 10 12

a+c
RANK ERROR: Mismatched left and right argument ranks

a+c
∧

While b and c look exactly the same, b is a list and c is and array. You can get around
this by explicitly specifying the rank which you want to work on, but in our case it’s
much easier if we just extract the first (and only) row of our ”array”, and we can use
Index for that.

Given a single number as its left argument, Index will return the corresponding row of
an array. You can also give it list (row, col) to specify the index of a single element:

⎕←mat←3 3⍴⍳9
1 2 3
4 5 6
7 8 9

2⌷mat
4 5 6

3 2⌷mat
8
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In our case, we can use 1⌷ to get the first (and only) row, which now is a simple list
looking exactly the same as before. But if we apply Shape again, we see the difference:

⍴1⌷⎕CSV'/path/to/names.txt'
5163

Now it’s time to actually work on our list of names. The first step is to sort them into
alphabetical order. Sorting can be done with Grade Up (⍋) and Grade Down (⍒). If
you apply one of those to a list, it will return the indices which would sort the list into
ascending or descending order:

⍋5 7 9 6 1 4 3 8 2
5 9 7 6 1 4 2 8 3

⍒5 7 9 6 1 4 3 8 2
3 8 2 4 1 6 7 9 5

So in the first case, an ascending order would be achieved by the element at index 5
(which is 1), then the element at index 9 (which is 2) and so on. To actually get our
sorted list, we can make use of the [] notation:

{⍵[⍋⍵]}5 7 9 6 1 4 3 8 2
1 2 3 4 5 6 7 8 9

{⍵[⍒⍵]}5 7 9 6 1 4 3 8 2
9 8 7 6 5 4 3 2 1

We can now apply the same function to our unsorted list of names, because Grade
Up/Down work equally well with strings:

{⍵[⍒⍵]}1⌷⎕CSV'/path/to/names.txt'
┌─────┬─────┬─────┬────┬─────┬───┬────┬───────┬───────┬─────┬
│AARON│ABBEY│ABBIE│ABBY│ABDUL│ABE│ABEL│ABIGAIL│ABRAHAM│ABRAM│ ...
└─────┴─────┴─────┴────┴─────┴───┴────┴───────┴───────┴─────┴

Now it’s time to calculate what the problem calls the ”alphabetical value” for each name.
In order to do this, we need to translate ’A’ to 1, ’B’ to 2 and so on. Fortunately, Dyalog
APL has the system function Unicode Convert (⎕UCS) which takes care of converting
characters to integer numbers (and vice versa).
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The result will be the decimal value of the character in the ASCII‐Table. To get the actual
position in the alphabet, we need to subtract 64 from that (Because ’A’ has the decimal
value of 65). Let’s use that on the name ”COLIN” from the problem’s example:

⎕UCS'COLIN'
67 79 76 73 78

¯64+⎕UCS'COLIN'
3 15 12 9 14

+/¯64+⎕UCS'COLIN'
53

And that already explains the second function. We just apply the last step of this ex‐
ample as a function to Each name, and the result is a list of the name values:

{+/¯64+⎕UCS ⍵}¨{⍵[⍋⍵]}1⌷⎕CSV'/path/to/names.txt'
49 35 19 30 40 8 20 41 44 35 6 14 78 46 19 20 23 23 37 41 27 32 46 50 ...

Just one more thing to do! To get the name scores, we need to multiply each of the
values with their position in the list. This is easily done by multiplying this result with a
list of 1 to 5163, because there are 5163 names in the list. Remember that applying an
operator to lists of the same length results in pairwise operation? That’s just what we
need! The first value will be mutliplied by 1, the second value by 2 and so on.

We don’t need to explicitly give 5163 as a parameter to ⍳ because we can just use Tally
to get the number of values, and use ⍵×⍳≢⍵ to calculate the name scores:

{⍵×⍳≢⍵}{+/¯64+⎕UCS ⍵}¨{⍵[⍋⍵]}1⌷⎕CSV'/path/to/names.txt'
49 70 57 120 200 48 140 328 396 350 66 168 1014 644 285 320 ...

And finally, we just have to use +/ again to get the total. That maybe wasn’t the typical
PE problem and had not much to to with number theory, but we learned a few new
things nonetheless.
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Problem 23 – Non‐abundant sums
Problem 23 deals with abundant numbers:

A perfect number is a number for which the sum of its proper divisors is exactly equal to
the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 +
14 = 28, which means that 28 is a perfect number.

A number n is called deficient if the sum of its proper divisors is less than n and it is called
abundant if this sum exceeds n.

As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that
can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can
be shown that all integers greater than 28123 can be written as the sum of two abundant
numbers. However, this upper limit cannot be reduced any further by analysis even though
it is known that the greatest number that cannot be expressed as the sum of two abundant
numbers is less than this limit.

Find the sum of all the positive integers which cannot be written as the sum of two abun‐
dant numbers.

That looks like a case for Outer Product again, and indeed my solution uses that:

{+/l~∘.+⍨⍵}∊{⍵<+/¯1↓⍸0=(⍳⍵)|⍵:⍵⋄⍬}¨l←⍳28123

I first made a list of all numbers up to 28123 and stored that in l. Then I apply this
function to Each number:

{⍵<+/¯1↓⍸0=(⍳⍵)|⍵:⍵⋄⍬}

If you remember problem 21, you’ll see that I use the same function to get the sum
of the proper divisors as I did there. I just added a guard which checks if that sum is
greater than ⍵ (thus ⍵ being abundant). If that is the case, the function returns ⍵, or
else an empty vector. The result is a partitioned list of abundant numbers and empty
vectors, which we can convert to a regular list using Enlist:

{⍵<+/¯1↓⍸0=(⍳⍵)|⍵:⍵⋄⍬}¨l←⍳28123
┌┬┬┬┬┬┬┬┬┬┬┬──┬┬┬┬┬┬──┬┬──┬┬┬┬──┬┬┬┬┬┬──┬┬┬┬┬┬──┬┬┬┬──┬
││││││││││││12││││││18││20││││24││││││30││││││36││││40│ ...
└┴┴┴┴┴┴┴┴┴┴┴──┴┴┴┴┴┴──┴┴──┴┴┴┴──┴┴┴┴┴┴──┴┴┴┴┴┴──┴┴┴┴──┴

∊{⍵<+/¯1↓⍸0=(⍳⍵)|⍵:⍵⋄⍬}¨l←⍳28123
12 18 20 24 30 36 40 42 48 54 56 60 66 70 72 78 80 84 88 ...
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There we have our list of abundant numbers. Now my approach was to get the sums
of all combinations of this using Outer Product and then apply this using Without to l,
which will remove all numbers from l that can be written as the sum of two abundant
numbers:

{l~∘.+⍨⍵}∊{⍵<+/¯1↓⍸0=(⍳⍵)|⍵:⍵⋄⍬}¨l←⍳28123
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 ...

And finally – what would we do without it? – +/ get’s our answer.
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Problem 24 – Lexicographic permutations
To solve problem 24, we need to find the millionth lexicographic permutation of
0 1 2 3 4 5 6 7 8 9.

A permutation is an ordered arrangement of objects. For example, 3124 is one possible
permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or
alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2
are:

012 021 102 120 201 210

What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?

Now if you want to take the easy way out, you could google your way to Dyalog’s dfns
page about permutations, and find a very fast permutation function, made by array
language veteran Roger Hui, called pmat2. Using this, we can get the answer in a
matter of milliseconds with ¯1+1e6⌷pmat2 10.

But if you are like me and like to find a solution using only what you know so far, feel
free to follow along. My solution is based on the method I found here:

Step 1. Take the previously printed permutation and find the rightmost character in it,
which is smaller than its next character. Let us call this character as ‘first character’.

Step 2. Now find the ceiling of the ‘first character’. Ceiling is the smallest character on
right of ‘first character’, which is greater than ‘first character’. Let us call the ceil character
as ‘second character’.

Step 3. Swap the two characters found in above 2 steps.

Step 4. Sort the substring (in non‐decreasing order) after the original index of ‘first char‐
acter’.

My solution below does just that, and it’s awfully slow compared to pmat2, taking 10
seconds to finish on my laptop. But I wrote it myself, it works, and I understand what
it does – which I can’t say about pmat2...

iab←{a←⌈/⍸2</⍵⋄a,a+⌈/⍸⍵[a]<a↓⍵}
sort←{((⊃⍺)↑⍵),⌽(⊃⍺)↓⍵}

{i←iab ⍵⋄i sort(⌽@i)⍵}⍣999999⊢¯1+⍳10

But let’s see what’s going on here. The first function iab returns the indices of the
numbers from step 1 and step 2 as a list of two elements:

iab 0 1 2 3 4 5 6 9 8 7
7 10
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a is found with ⌈/⍸2</⍵. If we break that down from right to left, the first action is
applying Less Than pairwise to the list, to identify all numbers which are smaller than
their successor:

2</ 0 1 2 3 4 5 6 9 8 7
1 1 1 1 1 1 1 0 0

We get a boolean list of the results, which shows that in this example, all numbers
except 9 and 8 are greater than their successor. We are only interested in the first
number from the right for which the result is true. We can get that by using Where to
get the indices of the 1s and taking the maximum of that:

⍸2</ 0 1 2 3 4 5 6 9 8 7
1 2 3 4 5 6 7

⌈/⍸2</ 0 1 2 3 4 5 6 9 8 7
7

The result is stored in a. b is found with a+⌈/⍸⍵[a]<a↓⍵. Again coming in from the
right, I first use a↓⍵ to drop all elements up to (and including) a from the list. Then I use
⍸⍵[a]< to get the indices of all numbers in this sublist which are greater than ⍵[a]
(all in this case):

{a←⌈/⍸2</⍵⋄a↓⍵}0 1 2 3 4 5 6 9 8 7
9 8 7

{a←⌈/⍸2</⍵⋄⍸⍵[a]<a↓⍵}0 1 2 3 4 5 6 9 8 7
1 2 3

We can again use ⌈/ to find the rightmost index. If we then add a to that, we have our
b. And appending this to a finishes the function:

{a←⌈/⍸2</⍵⋄⌈/⍸⍵[a]<a↓⍵}0 1 2 3 4 5 6 9 8 7
3

{a←⌈/⍸2</⍵⋄a+⌈/⍸⍵[a]<a↓⍵}0 1 2 3 4 5 6 9 8 7
10

{a←⌈/⍸2</⍵⋄a,a+⌈/⍸⍵[a]<a↓⍵}0 1 2 3 4 5 6 9 8 7
7 10
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Next comes the sort function which is responsible for step 4. But as it happens (and
if you follow this method) the sublist behind a and after applying step 3 is always in
descending order, so it’s sufficient to just rotate it. Let’s have a look at the function
again:

sort←{((⊃⍺)↑⍵),⌽(⊃⍺)↓⍵}

It uses the result of iab as it’s left argument and the list of numbers as it’s right input.
Then it takes the first element of iab and uses Take to get the sublist up to a. To this
it appends the reversed sulbist after a unsing the same index with Drop.

Now to the permutation function:

{i←iab ⍵⋄i sort(⌽@i)⍵}⍣999999⊢¯1+⍳10

It uses the Power Operator to run the permutation 999999 times, because the first
permutation is already the initial input. The first step is to use iab to get the current
values for a and b, which get stored in i. This is then the left argument for sort as
well as the right argument for Reverese At (⌽@), which just results in ⍵[a] and ⍵[b]
swapping paces like so:

(⌽@(3 5))8 7 6 1 2
8 7 2 1 6

And that is all that’s needed to solve the problem. It’s just the method described at the
beginning translated to APL, but apparently somewhat inefficient. The same method in
C returns the result almost instantly, so maybe it’s just a case of not thinking APL‐like
enough yet…
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Problem 25 – 1000‐digit Fibonacci number
Problem 25 offers another opportunity to make us of a previous solution. We already
worked on two problems, where list representations of big integers were used, and we
can again adapt the principles used there to solve this problem.

The Fibonacci sequence is defined by the recurrence relation:

Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1.

Hence the first 12 terms will be:

F1 = 1

F2 = 1

F3 = 2

F4 = 3

F5 = 5

F6 = 8

F7 = 13

F8 = 21

F9 = 34

F10 = 55

F11 = 89

F12 = 144

The 12th term, F12, is the first term to contain three digits.

What is the index of the first term in the Fibonacci sequence to contain 1000 digits?

sum←{{0<+/n←⌊⍵÷10:∇(10|⍵)+1⌽n⋄⊂⍵}∊⍵[1]+⍵[2]}

{{⍺←1⋄0=⊃∊⍵[1]:(⍺+1)∇⍵[2],(sum ⍵)⋄⍺}↓(2(⍵-1)⍴0),1 1}1000

I know that there are ways to get the result using the golden ratio and a simle formula,
but why not actually calculate the terms of the sequence, when we can? So let’s do it.

The inner block of the sum function uses the exact same process to get rid of list ele‐
mens larger than 9 as in problems 16 and 20, so I won’t cover that again. The input to
this is ∊⍵[1]+⍵[2], and to understand that better, we first need to look at the input
to the worker function, being ...↓(2(⍵-1)⍴0),1 1}1000.

We need two lists of the length specified by the input argument (1000 in this case)
to store numbers for the fibonacci sequence, because every new term is the sum of
the previous two. In order to build the initial state, I set up a segmented list of two
⍵‐element lists. They both consist of ⍵-1 zeros and a 1 at the end, representing F1 and
F2.
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Let’s look at the sequence of how that builds up step by step, using a smaller list size:

(2 10⍴0)
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(2 10⍴0),1 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1

↓(2 10⍴0),1 1
┌─────────────────────┬─────────────────────┐
│0 0 0 0 0 0 0 0 0 0 1│0 0 0 0 0 0 0 0 0 0 1│
└─────────────────────┴─────────────────────┘

The sum function now uses those two lists and adds them. The result is then Enlisted
and brought down to single digits with the inner block. When this is done, we need to
use Enclose (⊂) to box the result again, because the worker function (i.e. the way it is
designed) expects a boxed list. Let’s see the result with the shorter example‐lists:

{{0<+/n←⌊⍵÷10:∇(10|⍵)+1⌽n⋄⊂⍵}∊⍵[1]+⍵[2]}↓(2 10⍴0),1 1
┌─────────────────────┐
│0 0 0 0 0 0 0 0 0 0 2│
└─────────────────────┘

We now have the tool to sum the terms of the sequence, we just need a function that
loops until the 1000th digit becomes non‐zero. The worker function sets ⍺←1, which
will be our index of the nth term of the sequence. And because we are not actually
interested in the Fibonacci number itself, but just its index, the final return statement is
just ⍺.

The guard in between first checks if the first digit of ⍵[1] (being the current Fibonacci‐
number) is still zero using 0=⊃∊⍵[1]. While that is the case, the function calls itself
again with ⍺ raised by 1 and the sum of the current two terms appended to the second
one, hence building the next iteration of the Fibonacci sequence.

And that’s basically it. As you may have already guessed, I don’t like to show the final
results, because this book isn’t supposed to be a copy&paste template for PE solutions.
But those of you who like big numbers can see the resulting Fibonacci‐term on the next
page.
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But to test if everything works as intended, let’s check this with 3 as the input, which
should result in 12, becasue the 12th term is the forst one to have 3 digits:

{{⍺←1⋄0=⊃∊⍵[1]:(⍺+1)∇⍵[2],(sum ⍵)⋄⍺}↓(2(⍵-1)⍴0),1 1}3
12

And it does! And now, as promised, the first 1000‐digit Fibonacci‐number:

{{⍺←1⋄0=⊃∊⍵[1]:(⍺+1)∇⍵[2],(sum ⍵)⋄∊⍕¨∊⍵[1]}↓(2(⍵-1)⍴0),1 1}1000
10700662663827589367649805844573968850836838966321516650132352033753145
20604694040621889147582489792657804694888177591957484336466672569959512
99603046126274809248218614406943305123477444275027378175308757939166619
21492591867595539664228371489431130746995034395470019854326097230672901
92870526447243726117715821825548491120525013201478612965931381792235559
65745203950613755146783754322911960212993404826070617539770684706820289
54869026661854351245219003694806413574474709117076197669456910700980243
93439617474103736912503231365532164773697023167755051595173518460579954
91941096777837322966579658164651390348815425631018422419025984608800011
01862555502454939371136516570394476295847145485234259504285824253060835
44435428212611008992863795048006894330309773217834864543113205765659868
45628861680871869383529735064398629764066000072356291790520705116407761
48124918858309459405666883391093509444565763576661516193177537928916615
81327159616877487983821820492520348473874384736771934512787029218636250
627816
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Problem 26 – Reciprocal cycles
Problem 26 wants us to find the value of d<1000, for which 1/d has the longest recur‐
ring cycle in its decimal fraction part:

A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions
with denominators 2 to 10 are given:

1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9
= 0.(1) 1/10 = 0.1

Where 0.1(6) means 0.166666..., and has a 1‐digit recurring cycle. It can be seen that 1/7
has a 6‐digit recurring cycle.

Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal
fraction part.

My solution uses a pretty simple algorithm, which however has the disadvantage to
only work for values of d which actually have a recurring cycle. So I need to filter out
1, all even numbers and all numbers which are divisible by 5, which fortunately is easily
done in APL:

{⍵/⍨{⍵=⌈/⍵}{⍺←(⊃⍵)|10⋄⍺≠1:((⊃⍵)|10×⍺)∇⍵,0⋄≢⍵}¨⍵}1↓⍸∧⌿0≠2 5∘.|⍳999

The input list is created very similar to problem 1. We just remove all numbers which
are divisible by 2 or 5 from the list of all numbers from 1 to 999 and drop the first
element, which is 1.

The function then works by the principle that you start with a=10 mod d, and then
continously set a=(a*10) mod d in each iteration until a gets 1, the number of iterations
will be the length of the cycle. The right function is just a 1:1 translation of that in
APL and shouldn’t need further explanation if you followed the previous chapters. I
just need to mention a little trick to keep track of the number of iterations: In each
iteration, I append a 0 to the input number, and that’s why I need to pass ⊃⍵ instead of
just ⍵ to the modulo calculation.

At the end, ≢⍵ is returned, which is equal to the length of the cycle. We don’t need
to discard the first element (which is the input number), because the first iteration is
already done before appending any 0 with ⍺←(1↑⍵)|10. The resulting list of cycle
lengths then gets passed to {⍵=⌈/⍵} which returns a boolean list with a 1 at the
postion of the maximum length, and this is finally used to get the corresponding number
with Replicate.
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Problem 27 – Quadratic primes
Problem 27 deals with prime numbers, so we have the opportunity again to reuse some
bits of previous solutions. In this case, it’s the prime sieve that I used to solve problems
7 and 10.

Euler discovered the remarkable quadratic formula:

n2 + n+ 41

It turns out that the formula will produce 40 primes for the consecutive integer values
0 ≤ n ≤ 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41,
and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.

The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes for
the consecutive values 0 ≤ n ≤ 79. The product of the coefficients, −79 and 1601, is
−126479.

Considering quadratics of the form:

n2 + an+ b, where |a| < 1000 and |b| ≤ 1000

where |n| is the modulus/absolute value of n e.g. |11| = 11 and | − 4| = 4

Find the product of the coefficients a and b, for the quadratic expression that produces the
maximum number of primes for consecutive values of n, starting with n = 0.

This is a small enough range to justify a brute force solution in my opinion. And because
the equation needs to produce a prime for n=0, we know that b has to be a prime, thus
limiting the range of b to all prime numbers from 2 to 997. This reduces the amount of
possible a/b combinations from roughly 4,000,000 to 335,832!

My solution uses a primelist generated with the Sieve of Eratosthenes (see problem 7)
to generate a list of primes to check against. I first set the limit very high, because one
can’t be sure beforehand what the highest prime number that the equation procuces
will be.

It turns out that the highest prime for the a/b combination that solves the problem is
quite a bit less than 2000, and the highest prime number for all combinations is less
than 13,000. I set the limit to 2000, as the time‐critical task in my solution is searching
the list of primes for the current candidate.

p←{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍸⍵}0 1,(⍵-2)⍴1 0}2000
ab←(¯1000+⍳1999)∘.,p[⍸p<1000]

{×/∊ab[⍸⍵=⌈/∊⍵]}{⍺←1⋄p∊⍨(⍺*2)+(⍵[1]×⍺)+⍵[2]:(⍺+1)∇⍵⋄⍺}¨ab

79

https://projecteuler.net/problem=27


After having the prime list stored in p (please refer to problem 7 for an explanation of
this function), I set up ab using Outer Product with Catenate (∘.,) to produce an array
of all possible combinations of a (being ¯1000+⍳1999) and b, which is p at all indices
we get from p<1000.

Now it’s time to apply the work funcion to Each of those. I use ⍺ for n and set that to
1 initially. We don’t need to check if 0 produces a prime, because we already limited b
to primes. Hence, the condition which evaluates if the function should continue is:

p∊⍨(⍺*2)+(⍵[1]×⍺)+⍵[2]

To the right, we first calculate the result of the quadratic equation. Then Membership
(∊) is used to find out if the result is a member of p like so:

7∊2 3 5 7 11
1

8∊2 3 5 7 11
0

I used ⍨ to switch the order of the arguments, just to cut down on parentheses. While
that evaluates to true, the function calls itself with ⍺+1, else it will return ⍺, which
corresponds to the number of primes produced by the current a/b combo. The result
is an array consisting of all cycle lengths.

I finally use ⍸⍵=⌈/∊⍵ in the prepended function to get the index of the maximum
length and use this fo filter the corresponding a/b combination out of ab. Finally, ×/∊
calculates the product of both members.
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Problem 28 – Number spiral diagonals
To solve problem 28, we need to find the sum of the numbers on the diagonals of a
matrix, which is formed by a 1 in the middle and then, starting from the right of 1,
wrapping the consecutive numbers in a clockwise direction around it.

Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral
is formed as follows:

21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13

It can be verified that the sum of the numbers on the diagonals is 101.

What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the
same way?

If you play around a bit with this, you’ll notice a pattern: The numbers on the corners of
the first ring are all seperated by 2, the numbers on the second ring by 4, on the third
ring by 6 etc.

Also, the difference between the last number on ring N‐1 and the first number on ring
N is again 2, 4, 6, 8 etc.

We can use this to build the following solution:

+/+\1,4/2×⍳500

The first thing to do is to create a list consisting of 1 and then 4 copies each of all even
numbers up to the size of the matrix minus 1. Clear as mud, isn’t it? But hang on, we’ll
get there.

In the case of the 5×5 matrix, this is 5‐1=4 and we would need the following list:

2×⍳2
2 4

4/2×⍳2
2 2 2 2 4 4 4 4

1,4/2×⍳2
1 2 2 2 2 4 4 4 4
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This represents the numbers on the diagonals in the sense that we have a 1 in the
middle, surrounded by 4 numbers seperated by 2, then four numbers seperated by 4.
To get the actual numbers, all we need to do now is to use plus with Scan (+\) to return
the running sums which result from inserting plus between all numbers in the list. Then
it’s just a matter of +/ to get the total:

+\1,4/2×⍳2
1 3 5 7 9 13 17 21 25

+/+\1,4/2×⍳2
101

And that’s all there is to do to solve this! If you wanted, you could make it a little function
that get’s the width of the matrix as an input:

{+/+\1,4/2×⍳2÷⍨⍵-1}5
101
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Problem 29 – Distinct powers
Problem 29 asks us to find the number of distinct terms of ab for all combinations of
2 ≤ a ≤ 100 and 2 ≤ b ≤ 100.

Consider all integer combinations of ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100:

22 = 4, 23 = 8, 24 = 16, 25 = 32

32 = 9, 33 = 27, 34 = 81, 35 = 243

42 = 16, 43 = 64, 44 = 256, 45 = 1024

52 = 25, 53 = 125, 54 = 625, 55 = 3125

If they are then placed in numerical order, with any repeats removed, we get the following
sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤
b ≤ 100?

This is again pretty simple in APL (or any other array language for that matter), and my
solution is:

≢∪∊∘.*⍨1+⍳99

This shouldn’t need detailes explanations. It just a 1:1 translation of the problem, hence
asking APL to calculate all ab combinations, remove all duplicates from the result and
print out the number of remaining items. We can see that Outer Product does again a
good job of applying Power to all combinations, and because a and b share the same
range, we can just use Commute (⍨) to mirror 1+⍳99 over to the left side.

You can also solve (or at least simplify) the problem by doing a bit of preparatory brain
work, but this pure brute force solution takes just 3 milliseconds on my laptop, so in my
opinion it’s – buckle up – a no brainer.
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Problem 30 – Digit fifth powers
Drum roll and we are already at problem 30! Let’s hunt that one down!

Surprisingly there are only three numbers that can be written as the sum of fourth powers
of their digits:

1634 = 14 + 64 + 34 + 44

8208 = 84 + 24 + 04 + 84

9474 = 94 + 44 + 74 + 44

As 1 = 14 is not a sum it is not included.

The sum of these numbers is 1634 + 8208 + 9474 = 19316.

Find the sum of all the numbers that can be written as the sum of fifth powers of their
digits.

The problem implies that there is an upper limit, and if we fiddle around with a calculator
a bit, then 354294 should be a reasonable choice. That is 6 · 95, or the fifth powers of
the digits of 999999.

7 · 95 is 413343, so still a 6‐digit number. In fact, 194979 is the largest number which
can be written as the sum of fifth powers of its digits, but we don’t know that yet...

My solution looks like this:

{+/⍵/⍨{⍵=+/5*⍨⍵⊤⍨10⍴⍨1+⌊10⍟⍵}¨⍵}1+⍳354293

The input is a list from 2 to 354294. I then use 10⍴⍨1+⌊10⍟⍵ to create a list of as
many 10s as the input number’s digit count. One plus the floor of log10N will return
the number of digits of N, and Shape with 10 as it’s right argument will output as many
10s:

{(1+⌊10⍟⍵)⍴10}12345
10 10 10 10 10

I just used Switch to switch the order of arguments for saving parentheses. The same
then for Encode (⊤), which outputs an input number as a list of its digits, when the left
argument has as many 10s as the number has digits.
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It can also be used to convert decimals to binary, where the number of 2s you pass as
the left argument specifies the number of bits the result should have:

10 10 10⊤123
1 2 3

{⍵⊤⍨10⍴⍨1+⌊10⍟⍵}12345
1 2 3 4 5

(8⍴2)⊤123
0 1 1 1 1 0 1 1

Then again using Switch with Power and 5 to get the fifths powers, and finally +/ for
the sum:

{5*⍨⍵⊤⍨10⍴⍨1+⌊10⍟⍵}12345
1 32 243 1024 3125

{+/5*⍨⍵⊤⍨10⍴⍨1+⌊10⍟⍵}12345
4425

At the end, ⍵= makes sure that the function returns a 1 if the sum is euqal to the input
number, or 0 if it’s not. Then it’s just a matter of using Replicate (with Switch, of course)
to get all relevant numbers and +/ for the total.

Note: There is an alternative (and much shorter) way to convert a number to a list of
it’s digits, and that is to combine Execute Each with Format like so:

⍎¨⍕12345
1 2 3 4 5

However, don’t be misled by the terseness of this. the runtime will be much longer
when you have to deal with a large number base. Using this, converting all numbers
from 1 to 1,000,000 takes more than a minute on my laptop, while using Encode like in
the above solution takes less than two seconds.
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Problem 31 – Coin sums
Problem 31 is a classic one, asking us for the number of possible combinations to make
£2 out of any number of coins (1p, 2p, 5p, 10p, 20p, 50p, £1 (100p), and £2 (200p)).

In the United Kingdom the currency is made up of pound (£) and pence (p). There are eight
coins in general circulation:

1p, 2p, 5p, 10p, 20p, 50p, £1 (100p), and £2 (200p).

It is possible to make £2 in the following way:

1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p

How many different ways can £2 be made using any number of coins?

There are typically two ways of solving this: Through recursion or dynamic program‐
ming, I chose the latter. The inner function works with recursion, but that’s only used
to do the loops, you could also implement it with the power operator or explicit for
loops, depending on the APL dialect you are using.

And this is what came out of it:

c←200 100 50 20 10 5 2 1

{⊃⌽∊{i←⍺⋄(⍺+1){⍺≤≢⍵:(⍺+1)∇((⍵[⍺]+⍵[⍺-i])@⍺)⍵⋄⍵}⍵}/c,⊂1,⍵⍴0}200

The algorithm is basically the same that’s explained under the link above or similar sites.
We have an outer loop that iterates over every coin value stored in c, and an inner loop
which adds the current value in the list to the one thats c[i] positions in front.

The list itself is initially a 1 followed by as many 0s as the value we want to get the
combinations vor. In our case it’s a 1 followed by 200 zeros, which is initialized by
1,⍵⍴0 in the outermost function.

Similar to problems 18 and 20, I apply a function using Reduce/Fold /. And again, it can
be shown what’s actually happening when we just apply the function {⍺⍵} with Fold
to this list:
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{⍺⍵}/c,⊂1,200⍴0
┌────────────────────────────────────────────────┐
│┌───┬──────────────────────────────────────────┐│
││200│┌───┬────────────────────────────────────┐││
││ ││100│┌──┬───────────────────────────────┐│││
││ ││ ││50│┌──┬──────────────────────────┐││││
││ ││ ││ ││20│┌──┬─────────────────────┐│││││
││ ││ ││ ││ ││10│┌─┬─────────────────┐││││││
││ ││ ││ ││ ││ ││5│┌─┬─────────────┐│││││││
││ ││ ││ ││ ││ ││ ││2│┌─┬─────────┐││││││││
││ ││ ││ ││ ││ ││ ││ ││1│1 0 ... 0│││││││││
││ ││ ││ ││ ││ ││ ││ │└─┴─────────┘││││││││
││ ││ ││ ││ ││ ││ │└─┴─────────────┘│││││││
││ ││ ││ ││ ││ │└─┴─────────────────┘││││││
││ ││ ││ ││ │└──┴─────────────────────┘│││││
││ ││ ││ │└──┴──────────────────────────┘││││
││ ││ │└──┴───────────────────────────────┘│││
││ │└───┴────────────────────────────────────┘││
│└───┴──────────────────────────────────────────┘│
└────────────────────────────────────────────────┘

It shows that in the first iteration, ⍺ will be the rightmost element of c, which is 1, and
⍵ will be the initial list. In the second iteration, ⍺ will be 2 and ⍵ will be the result of the
first iteration. It is important to use Enclose ⊂ for the list again, because it needs to be
a segment of the input, not just the numbers appended as single items.

The function itself is this:

{i←⍺⋄(⍺+1){⍺≤≢⍵:(⍺+1)∇((⍵[⍺]+⍵[⍺-i])@⍺)⍵⋄⍵}⍵}

The outer loop, if you will, first stores the current coin value in i, because I need that
value unchanged in the inner function. Then ⍺+1 get’s passed as the right argument to
the inner function. I need ⍺+1 because I have my index origin set to 1 (which is default),
and the first element of the list which needs to be changed is the second one.

Then the inner function iterates from ⍺ to ≢⍵ and replaces ⍵[⍺] with ⍵[⍺]+⍵[⍺-i],
using At. The outer loop makes sure that this process is done for all coin vaslues, and
the answer to the problem is then the last element of the resulting list, which I extract
with First of the Reverse of the Enlisted (because it’s still enclosed) list.

87



The benefit of this solution is that you not only get the answer for the value in question,
but also vor any value up to this, which can be seen if we return the whole list short of
the first element:

{1↓∊{i←⍺⋄(⍺+1){⍺≤≢⍵:(⍺+1)∇((⍵[⍺]+⍵[⍺-i])@⍺)⍵⋄⍵}⍵}/c,⊂1,⍵⍴0}200
1 2 2 3 4 5 6 7 8 11 12 15 16 19 22 25 28 31 34 41 44 51 54 61 68 75 ...

So there is 1 way of making 1p, 2 ways of making 2p (2x1p, 1x2p), two ways of making
3p (3x1p, 1p+2p) and so on.
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Problem 32 – Pandigital products
To solve problem 32, we need to find the sum of all products, whose combination of
multiplicand, multiplier and product is 1 through 9 pandigital:

We shall say that an n‐digit number is pandigital if it makes use of all the digits 1 to n exactly
once; for example, the 5‐digit number, 15234, is 1 through 5 pandigital.

The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand,
multiplier, and product is 1 through 9 pandigital.

Find the sum of all products whose multiplicand/multiplier/product identity can be written
as a 1 through 9 pandigital. HINT: Some products can be obtained in more than one way
so be sure to only include it once in your sum.

We can limit the range of products to 4‐digit numbers, because we know that we need
to use all digits from 1 to 9 exactly once. If the product had 3 digits or less, we would
need to use 6 digits or more for multiplicand and multiplier, which could never result in
a product that small. Vice versa, if the product had 5 digits or more, we couldn’t make
that using only 4 digits or less for multiplicand and multiplier.

Also, because we can’t use any digit more than once and also zeros are not allowed, we
can limit the list of products to start at 1234 and end at 9876. That range still includes
invalid numbers, of course, but that’s good enough. We could further limit the input by
excluding all primes etc., but that wouldn’t significantly speed up the following solution:

pdp←{0<+/{10=≢∪∊(4⍴10)⊤⍵}¨{d←1↓⍸0=(⍳⌊⍵*÷2)|⍵⋄d,¨(⍵÷d),¨⍵}⍵}

+/{pdp ⍵:⍵⋄0}¨1233+⍳8643

I first created a function pdp to find out if a number produces a 1 throuhg 9 pandigital
multiplicand/multiplier/product identity. This takes the number to examine as its input,
and passes that through to the follwoing block:

{d←1↓⍸0=(⍳⌊⍵*÷2)|⍵⋄d,¨(⍵÷d),¨⍵}

This function first calculates all divisors up to the square root of ⍵ (see problem 21
if the method is unclear), and stored those in d. This will be the the list of multipli‐
cands. Then it appends Each matching multiplier by calculating ⍵÷d, and finally ⍵ itself,
which produces multiplicand/multiplier/product‐tuples. Let’s see how that operates in
sequence:
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{d←1↓⍸0=(⍳⌊⍵*÷2)|⍵⋄d}7254
2 3 6 9 13 18 26 31 39 62 78

{d←1↓⍸0=(⍳⌊⍵*÷2)|⍵⋄d,¨(⍵÷d)}7254
┌──────┬──────┬ ┬──────┬──────┬─────┐
│2 3627│3 2418│...│39 186│62 117│78 93│
└──────┴──────┴ ┴──────┴──────┴─────┘

{d←1↓⍸0=(⍳⌊⍵*÷2)|⍵⋄d,¨(⍵÷d),¨⍵}7254
┌───────────┬───────────┬ ┬───────────┬───────────┬──────────┐
│2 3627 7254│3 2418 7254│...│39 186 7254│62 117 7254│78 93 7254│
└───────────┴───────────┴ ┴───────────┴───────────┴──────────┘

That’s most of the work done! We now just need to seperate each tuple into it’s digits
and check if that list contains all numbers from 1 to 9. This is done by the next function
block, which is applied to Each of the tuples:

{10=≢∪∊(4⍴10)⊤⍵}

I first use Encode with a right argument of 4⍴10 to split each element each of the tuple
to a 4‐digit list, resulting in 0 at empty decimal places for numbers with less than 4
digits. Then the resulting table is Enlisted and the Unique elements extracted:

{(4⍴10)⊤⍵}39 186 7254
0 0 7
0 1 2
3 8 5
9 6 4

{∊(4⍴10)⊤⍵}39 186 7254
0 0 7 0 1 2 3 8 5 9 6 4

{∪∊(4⍴10)⊤⍵}39 186 7254
0 7 1 2 3 8 5 9 6 4

The remaining 0 doesn’t hurt, because it will be there for every possible tuple and we
can just account for that by checking with 10=≢ if the resulting list has 10 elements.
If that is true, we know that this multiplicand/multiplier/product tuple is 1 through 9
pandigital. The result of this will be a boolean list with 1 for every tuple that satisfies
this condition.
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We just need to sum the elements of this list to get a singular result which we can use
to check if a number produces such a tuple:

{{10=≢∪∊(4⍴10)⊤⍵}¨{d←1↓⍸0=(⍳⌊⍵*÷2)|⍵⋄d,¨(⍵÷d),¨⍵}⍵}7254
0 0 0 0 0 0 0 0 1 0 0

{0<+/{10=≢∪∊(4⍴10)⊤⍵}¨{d←1↓⍸0=(⍳⌊⍵*÷2)|⍵⋄d,¨(⍵÷d),¨⍵}⍵}7254
1

I also prepended 0< because the problem already states that some products can be
obtained in more than one way, and I just need a 1 or 0 for the worker function, which
looks like this:

+/{pdp ⍵:⍵⋄0}¨1233+⍳8643

It just checks for every possible product if it produces a 1‐9 pandigital tuple and returns
⍵ if that’s the case, else 0. Finally, +/ gets our answer, being the sum of all relevant
products.
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Problem 33 – Digit cancelling fractions
Problem 33 is an interesting one:

The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting
to simplify it may incorrectly believe that 49/98 = 4/8, which is correct, is obtained by
cancelling the 9s.

We shall consider fractions like, 30/50 = 3/5, to be trivial examples.

There are exactly four non‐trivial examples of this type of fraction, less than one in value,
and containing two digits in the numerator and denominator.

If the product of these four fractions is given in its lowest common terms, find the value
of the denominator.

This can be solved by pure brute force, of course. But we can simplify the solution by
significantly reducing the amount of valid fractions n

d
.

The first thing we can do is omitting all values which are multiples of 10. For those, the
only option is to cancel out the 0s (otherwise, we would either divide by 0 or the result
would be 0), and that is what the problem calls a ”trivial example”.

It can further be shown that valid solutions can only be achieved by canceling the sec‐
ond digit of the numerator and the first digit of the denominator (see for example here).

This lead me to the following solution:

f←↑,/{⍵,¨l[⍸(l>⍵)∧(10|⍵)=⌊l÷10]}¨l←{⍵/⍨0≠10|⍵}10+⍳89

{⍵[2]÷∨/⍵}{∊×/⍵/f}{(÷/⍵)=(⌊⍵[1]÷10)÷10|⍵[2]}¨f

In the first line, I set up all possible n/d pairs and store them as a segmented list in f.
Starting from the right, as usual, I first create a list of all 2‐digit numbers greater than
10 with 10+⍳89. This gets passed to {⍵/⍨0≠10|⍵}, which removes all multiples of
10. This reduced list is now stored in l.

The next function block is applied to Each of those numbers, takes the input number
and appends every number of l which is larger than ⍵ (because n

d
needs to be smaller

that 1) And also shared its first digit with the last digit of ⍵ using (10|⍵)=⌊l÷10.
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The result is now a segmented list of segmented n/d pairs:

{⍵,¨l[⍸(l>⍵)∧(10|⍵)=⌊l÷10]}¨l←{⍵/⍨0≠10|⍵}10+⍳89
┌─────────────────────────────────────────────────┬─────────────
│┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐│┌─────┬─────┬
││11 12│11 13│11 14│11 15│11 16│11 17│11 18│11 19│││12 21│12 22│...
│└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘│└─────┴─────┴
└─────────────────────────────────────────────────┴─────────────

Because we don’t need the results to be seperated by values of n, we can remove that
level of segmentation. First, we can use Ravelwith Reduce (,/) to laminate all n/d tuples
to a sinle list, which however is still boxed. This unneeded box can be removed with
Mix:

,/{⍵,¨l[⍸(l>⍵)∧(10|⍵)=⌊l÷10]}¨l←{⍵/⍨0≠10|⍵}10+⍳89
┌─────────────────────────────────────────────────────────────
│┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬
││11 12│11 13│11 14│11 15│11 16│11 17│11 18│11 19│12 21│12 22│...
│└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴
└─────────────────────────────────────────────────────────────

↑,/{⍵,¨l[⍸(l>⍵)∧(10|⍵)=⌊l÷10]}¨l←{⍵/⍨0≠10|⍵}10+⍳89
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬
│11 12│11 13│11 14│11 15│11 16│11 17│11 18│11 19│12 21│12 22│...
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴

I store this in f, and now it’s time to apply the worker function to this:

{⍵[2]÷∨/⍵}{∊×/⍵/f}{(÷/⍵)=(⌊⍵[1]÷10)÷10|⍵[2]}¨f

The first function block checks for Each n/d tuple, if n
d
= ⌊n/10⌋

d mod 10 , thus returning a 1 for
all valid fractions that satisfy the problem. This result is then used in the next block to
filter out the corresponding n/d tuples using ⍵/f. And to get the product of those as
a simple list, we just need to prepend ∊×/:

{⍵/f}{(÷/⍵)=(⌊⍵[1]÷10)÷10|⍵[2]}¨f
┌─────┬─────┬─────┬─────┐
│16 64│19 95│26 65│49 98│
└─────┴─────┴─────┴─────┘

{∊×/⍵/f}{(÷/⍵)=(⌊⍵[1]÷10)÷10|⍵[2]}¨f
387296 38729600
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To get the answer to the problem (the denominator of this fraction when it has been
reduced to its lowest common terms), we can apply GCD (the monadic form of ∨) with
Reduce to this list and divide the second element (which is the denominator) by the
result of this.

I must admit that while this solution works, it’s a bit cumbersome and probably could
have been simplified further. But we all have those days, don’t we?
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Problem 34 – Digit factorials
To solve problem 34, we need to find all numbers which are equal to the sum of the
factorial of their digits:

145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.

Find the sum of all numbers which are equal to the sum of the factorial of their digits.

Note: As 1! = 1 and 2! = 2 are not sums they are not included.

As the problem implies, there is an upper limit, and we can define that as 7·9! = 2540160,
because 8 · 9! = 2903040, which is still a 7‐digit number. This is still way too high, as
you will see in a minute, but when you can’t be sure and don’t have the time (or the
patience) to think about a way to further decrease this, it’s better to start with an upper
bound that is too high, than to miss a relevant number.

I set the lower bound to 3, because 1 and 2 should be skipped according to the problem.

My solution, using these bounds, looks like this:

{+/⍵/⍨{⍵=+/!⍵⊤⍨10⍴⍨1+⌊10⍟⍵}¨⍵}2+⍳2540160

And this is basically the same solution as the one I used to solve problem 30, except for
the number range and replacing the fifth power with the factorial. So please see there
for an explanation of the function.
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Problem 35 – Circular primes
Primes again, finally! Problem 35 deals with so called circular primes:

The number, 197, is called a circular prime because all rotations of the digits: 197, 971,
and 719, are themselves prime.

There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and
97.

How many circular primes are there below one million?

Time to get ye olde prime sieve out of the attic, which I used to build the following
solution:

p←{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍵}0 1,(⍵-2)⍴1 0}1e6
rot←{10⊥¨{n≢r←⊂1⌽⊃⌽⍵:∇⍵,r⋄⍵}n←{⊂⍵⊤⍨10⍴⍨1+⌊10⍟⍵}⍵}

+/{(≢rn)=+/p[rn←rot ⍵]}¨⍸p

The prime sieve that I use to build p is the same as in problems 7 and 10, except for one
minor but important detail: I don’t return the primes themselves using ⍸⍵ but just the
boolean list ⍵. I do this because checking if a number n is prime or not is much faster
with p[n] than using Membership with p∊n. It is 30 times faster for the complete
solution in this case!

After the prime sieve for all numbers below one million is done, I set up the rot func‐
tion, which – given a number – returns a list of all its rotations:

rot 12345
12345 23451 34512 45123 51234

The first (rightmost) block in rot takes the input number and splits it into its digits using
the same technique as in problems 30 and 34. The result is then Enclosed and stored
in n. Enclosing it is necessary because I first build all rotations as lists of digits before
converting them back to numbers. Hence, I need a partitioned list of rotated lists. It’ll
become clearer in a minute, but let’s see the result up to this point:

{{⊂⍵⊤⍨10⍴⍨1+⌊10⍟⍵}⍵}12345
┌─────────┐
│1 2 3 4 5│
└─────────┘
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The next block takes this as it’s input, and uses a guard whose if condition checks
n≢r←⊂1⌽⊃⌽⍵. This compares n with the 1‐step‐to‐the‐left‐rotation (1⌽) of the last
element of ⍵, which we get in the usual way using First of the Reverse (⊃⌽⍵). The result
of this is also stored in r, because I need it again in the following loop.

I compare n to ⊂1⌽⊃⌽⍵, because in the loop I append exatly this to⍵ and let the funciton
call itself with this as the new input. So in essence, the function will keep appending
rotations until it arrives at the starting point, which isn. The result is the aforementioned
paritioned list of rotated lists:

{{n≢r←⊂1⌽⊃⌽⍵:∇ ⍵,r ⋄ ⍵}n←{⊂⍵⊤⍨10⍴⍨1+⌊10⍟⍵}⍵}12345
┌─────────┬─────────┬─────────┬─────────┬─────────┐
│1 2 3 4 5│2 3 4 5 1│3 4 5 1 2│4 5 1 2 3│5 1 2 3 4│
└─────────┴─────────┴─────────┴─────────┴─────────┘

All that’s left to do now is to use Decode with base 10 and Each to convert this back to
a list of rotated numbers:

{10⊥¨{n≢r←⊂1⌽⊃⌽⍵:∇ ⍵,r ⋄ ⍵}n←{⊂⍵⊤⍨10⍴⍨1+⌊10⍟⍵}⍵}12345
12345 23451 34512 45123 51234

Now it’s finally time to start the worker function:

+/{(≢rn)=+/p[rn←rot ⍵]}¨⍸p

This uses ⍸p as its input, which is just the list of prime numbers under one million. Then,
for Each of those, I build the list of rotations and store that in rn. Then p[rn←rot ⍵]
is used to return a list of 0s and 1s, depending on if the numbers in the list of rotations
are prime or not.

To check if all numbers in the list are prime, I sum the result of this and compare it to
≢rn. Because if we have as many 1s as the number of elements in rn, that’s a bingo.
This will return a list of 1s (for circular primes) and 0s, so we just need to apply +/ to
this to get the final answer.
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Problem 36 – Double‐base palindromes
Problem 36 deals with palindromic numbers, but this time in two bases.

The decimal number, 585 = 10010010012 (binary), is palindromic in both bases.

Find the sum of all numbers, less than one million, which are palindromic in base 10 and
base 2.

(Please note that the palindromic number, in either base, may not include leading zeros.)

The last line already limits the problem to odd numbers, because all even numbers have
a 0 at the last bit in base 2, which would result in a leading zero for the reverse. My
following solution accounts for that:

split←{⍵⊤⍨⍺⍴⍨1+⌊⍺⍟⍵}

+/{⍵/n}{{⍵≡⌽¨⍵}{2 10∘.split ⍵}⍵}¨n←¯1+2×⍳5e5

The list of odd numbers under one million is built with ¯1+2×⍳5e5 and stored in n.
Then I use the same method as in the previous problem (also in problems 30 and 34) to
convert Each number to a list of it’s digits, but this time as a function which takes the
base as its left argument:

10 split 585
5 8 5

2 split 585
1 0 0 1 0 0 1 0 0 1

In the worker function, I use Outer Product with 2 and 10 as the left arguments for
split to get a partintioned result:

2 10∘.split 585
┌───────────────────┬─────┐
│1 0 0 1 0 0 1 0 0 1│5 8 5│
└───────────────────┴─────┘

This result get’s passed to the function {⍵≡⌽¨⍵}, which checks if the reverse of both
bases matches the input. The resulting boolean list, which contains a 1 for each number
that satisfies the condition, is then used to get the corresponding numbers using ⍵/n.
Finally, as always, +/ gets our final answer.
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Problem 37 – Truncatable primes
Primes again in problem 37!

The number 3797 has an interesting property. Being prime itself, it is possible to continu‐
ously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and
7. Similarly we can work from right to left: 3797, 379, 37, and 3.

Find the sum of the only eleven primes that are both truncatable from left to right and right
to left.

NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.

I wanted to reuse the sieve that I used to solve e.g. problems 7 and 10, but I needed to
define an arbitrary upper limit, because I couldn’t think of an easy method to calculate
one. So i set it to one million and luckily, that was sufficient:

p←{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍵}0 1,(⍵-2)⍴1 0}1e6
trunc←{({10<n←⊃⍵:∇(⌊n÷10),⍵⋄⍵}⍵),{10<n←⊃⌽⍵:∇⍵,n|⍨10*⌊10⍟n⋄1↓⍵}⍵}

+/4↓{(≢t)=+/p[t←trunc ⍵]:⍵⋄0}¨⍸p

The trunc function is responsible for truncating in both directions and returning a list
of all results:

trunc 3797
3 37 379 3797 797 97 7

I designed it to return kind of a ”mirrored” image, just for fun. But let’s look at both sub‐
functions. The left one is responsible for truncating from right to left by continously
dividing the number by 10 (and flooring the result to get an integer), building a list of
these results on the way. The if condition 10<n←⊃⍵ checks if the remaining number is
still greater than 10.

The right function does the left‐to‐right truncation. This uses 10*⌊10⍟n to get the
power of 10 that matches the current digit count and modulo to truncate one digit
from the left. At the end, 1↓⍵ is returned in order to not include the initial number
twice.

The worker function is then similar to problem 35:

+/4↓{(≢t)=+/p[t←trunc ⍵]:⍵⋄0}¨⍸p
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This checks for Each prime number in p if all elements resulting of trunc ⍵ are prime.
If that is the case, ⍵ gets returned, else 0. Then we need to drop the first four numbers
of the resulting list, because the problem states to not include 2, 3, 5 and 7. Finally, +/
gets the answer again.
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Problem 38 – Pandigital multiples
Problem 38 deals with pandigital numbers. Smells like splitting into digits again.

Take the number 192 and multiply it by each of 1, 2, and 3:

192 × 1 = 192
192 × 2 = 384
192 × 3 = 576

By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call
192384576 the concatenated product of 192 and (1,2,3)

The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving
the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).

What is the largest 1 to 9 pandigital 9‐digit number that can be formed as the concatenated
product of an integer with (1,2, ... , n) where n > 1?

For this problem, finding a upper and lower bound for the input numbers to check is
easy. We know that the input number needs to be lower than 10000, because the con‐
catenated product of a 5‐digit number and (1,2) will result in at least 10 digits. Similarly,
if the number has 2 or 3 digits, we won’t be able to get a 9‐digit concatenated product.

So we are left with 4‐digit numbers, and we can further limit the range a bit to all
numbers from 9123 to 9876, because the input number can’t have multiple digits itself.
This also means that we only need to check for n=(1,2), because the concatenated
product would contain too much digits if we go further.

And my solution using this range looks like this:

⌈/{{(∊⍕¨⍳9)≡⍵[⍋⍵]:⍎⍵⋄0}{∊⍕¨1 2×⍵}⍵}¨9122+⍳754

After setting up the input list accordingly, I apply a block of two functions to Each
number. The first one builds a list of both products with 1 2×⍵ and then uses Format
Each and finally Enlist to get the concatenated product as a string:

{1 2×⍵}9273
9273 18546

{⍕¨1 2×⍵}9273
┌────┬─────┐
│9273│18546│
└────┴─────┘

{∊⍕¨1 2×⍵}9273
927318546
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The next function block checks if the sorted string matches ∊⍕¨⍳9, which is using the
same technique as before to get the string ”123456789”. If that is the case, the function
returns the string as a number using Execute, else 0:

{{(∊⍕¨⍳9)≡⍵[⍋⍵]:⍎⍵⋄0}{∊⍕¨1 2×⍵}⍵}9273
927318546

After this we just need to apply ⌈/ to get the maximum of all results, which is the
answer to the problem.
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Problem 39 – Integer right triangles
Problem 39 is about right angle triangles, and we can reuse the function to create those
from problem 9.

If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are
exactly three solutions for p = 120.

{20,48,52}, {24,45,51}, {30,40,50}

For which value of p ≤ 1000, is the number of solutions maximised?

My solution uses Dickson’s Method again, so please refer to problem 9 for an explana‐
tion of this part. It is also important to note that Dickson’s method will return triangles
with a perimeter ≤ 1000 up to an input number of 168, so we can limit the range to
this value:

tri←{⍵{⍺+⍵[1],⍵[2],+/⍵}¨{⍵,n÷⍵}¨{⍸0=⍵|⍨⍳⌊⍵*÷2}n←2÷⍨⍵×⍵}

{c←+⌿⍵∘.∊∪⍵⋄(∪⍵)[⍸c=⌈/c]}{⍵[⍸⍵≤1000]}∊{+/¨tri ⍵}¨2×⍳84

The perimeters of all triplets foundwith Each input number are calculated using +/¨tri
⍵, and the result is then Enlisted to get a simple list of the results:

{+/¨tri ⍵}¨2×⍳84
┌──┬─────┬────────┬────────┬─────────┬───────────────────┬
│12│30 24│56 40 36│90 60 48│132 84 60│182 112 90 80 72 70│...
└──┴─────┴────────┴────────┴─────────┴───────────────────┴

∊{+/¨tri ⍵}¨2×⍳84
12 30 24 56 40 36 90 60 48 132 84 60 182 112 90 80 72 70 ...

The next function block filters for all perimeters which are ≤ 1000, because Dickson’s
Method will produce some triplets that have a greater perimeter than this.

The last function then uses the same technique to get the counts of the individual
perimeters as I used in problem 12 to get the count of the prime factors, so please
refer to that chapter if you need clarifiaction on the +⌿⍵∘.∊∪⍵ bit. The list of counts is
stored in c and this is then used to filter out the perimeter with the highes count using
(∪⍵)[⍸c=⌈/c].
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Problem 40 – Champernowne’s constant
Already at problem 40, only 10 more to go after this!

An irrational decimal fraction is created by concatenating the positive integers:

0.123456789101112131415161718192021...

It can be seen that the 12th digit of the fractional part is 1.

If dn represents the nth digit of the fractional part, find the value of the following expres‐
sion.

d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000

It can be shown (or evaluated with APL), that concatenating the numbers up to 185185 is
just sufficient to result in one million digits. My solution uses that as its limit:

{×/⍵[10*¯1+⍳7]}∊{⍵⊤⍨10⍴⍨1+⌊10⍟⍵}¨⍳185185

I use the same split‐to‐digits method as in many problems before, so I won’t explain the
first function block, which get’s applied to Each input number and returns a partitioned
list of each number’s digits, which we can convert to an unsegmented list using Enlist:

{⍵⊤⍨10⍴⍨1+⌊10⍟⍵}¨⍳20
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│1│2│3│4│5│6│7│8│9│1 0│1 1│1 2│1 3│1 4│1 5│1 6│1 7│1 8│1 9│2 0│
└─┴─┴─┴─┴─┴─┴─┴─┴─┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

∊{⍵⊤⍨10⍴⍨1+⌊10⍟⍵}¨⍳20
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

After that, it’s just a matter of using ⍵[10*¯1+⍳7] to get the digits at indices 1, 10,
100, 1000, 10000, 100000 and 1000000, and ×/ takes care of the product.
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Problem 41 – Pandigital prime
Pandigital numbers again in problem 41, this time: primes.

We shall say that an n‐digit number is pandigital if it makes use of all the digits 1 to n exactly
once. For example, 2143 is a 4‐digit pandigital and is also prime.

What is the largest n‐digit pandigital prime that exists?

This now puts my prime sieve to the test, because we need all primes up to 987654321.
Or do we? It can be shwon that a number is divisible by 3, if the sum of its digits is
divisible by 3. For a 1 through 9 pandigital number, the digit sum is 45. For a 1 to 8
pandigital number, it evaluates to 36. Both are divisible by 3, hence no 1 through 8 or 9
pandigital number can be prime, and we can lower the limit to a much more managable
7654321 (and in fact, the number of interest is very close to that):

p←{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍸⍵}0 1,(⍵-2)⍴1 0}7654321

⌈/∊{⍵[⍋⍵]≡⍳≢⍵:10⊥⍵⋄⍬}¨{⍵⊤⍨10⍴⍨1+⌊10⍟⍵}¨p

The first step is again to split Each prime to a list of its digits (see problems 30, 34,
35). Then I apply {⍵[⍋⍵]≡⍳≢⍵:10⊥⍵⋄⍬} to Each of these results, which compares
the sorted list of digits with a list from 1 up to the digit count. If that finds a match,
it returns 10⊥⍵, being the list of digits put back together to the number using Decode.
Else, an empty vector ⍬ is returned.

The partitioned list of results is then Enlisted and finally ⌈/ finds the maximum.
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Problem 42 – Coded triangle numbers
Problem 42 gives us the opportunity to reuse most of what we needed to solve problem
22:

The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first
ten triangle numbers are:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

By converting each letter in a word to a number corresponding to its alphabetical position
and adding these values we form a word value. For example, the word value for SKY is 19
+ 11 + 25 = 55 = t10. If the word value is a triangle number then we shall call the word a
triangle word.

Using words.txt (right click and ’Save Link/Target As...’), a 16K text file containing nearly
two‐thousand common English words, how many are triangle words?

And here is my solution:

{+/⍵∊+\⍳20}{+/¯64+⎕UCS ⍵}¨1⌷⎕CSV'/path/to/words.txt'

As I said, the first part up to the last function block is pretty much identical to my
solution for problem 22, so please refer to this for detailed explanations. After we got
our word values with +/¯64+⎕UCS ⍵, we just need to identify those which are triangle
numbers. I already showed in problem 12, that the list of the first n triangle numbers
is easily built in APL using +\⍳n:

+\⍳20
1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210

And in fact, this is just the range we need, because the highest word value is just over
190. The last function now uses this list with Membership, to check which values are
triangle numbers, and +/ gets the answer one more time.
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Problem 43 – Sub‐string divisibility
Problem 43 has pandigital numbers on the menu again, but this time with a twist:

The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each
of the digits 0 to 9 in some order, but it also has a rather interesting sub‐string divisibility
property.

Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note the following:

d2d3d4 = 406 is divisible by 2
d3d4d5 = 063 is divisible by 3
d4d5d6 = 635 is divisible by 5
d5d6d7 = 357 is divisible by 7
d6d7d8 = 572 is divisible by 11
d7d8d9 = 728 is divisible by 13
d8d9d10 = 289 is divisible by 17

Find the sum of all 0 to 9 pandigital numbers with this property.

This is one of those problems which are actually faster to solve with pen&paper than
by designing an algorithm for it. But let’s try that nonetheless:

d←{↓⍉⍵/(3⍴10)⊤n}¨↓0=2 3 5 7 11 13 17∘.|n←{⍵/⍨{⍵=⍎∪⍕⍵}¨⍵}11+⍳976
comb←{⍵/⍨9=≢¨∪¨⍵}↑{{(1↑⍵),3↓⍵}¨{⍵/⍨{(2↑1↓⍵)≡2↑3↓⍵}¨⍵},⍺∘.,⍵}/d

0⍕+/{10⊥((⍳9)~⍵),⍵}¨comb

What the...? I must admit it looks terrible, but despite being brute force, it solves the
problem in 35 milliseconds and that’s not bad at all! Let’s examine this bit by bit, and
you’ll see that it actually makes sense. Kind of...

The first line sets up d2d3d4, d3d4d5 etc. I first created a list of all numbers from 12 to
987, because that’s the range in which all digit triples must sit, in order to satisfy the
problem. The prepended function {⍵/⍨⍵≡⍎∪⍕⍵¨⍵} takes Each number, converts it to
a string with Format, then takes the Unique ”numbers” and converts that to a number
again with Execute. The result of this is then compared to the original number. I do this
to identify all numbers which have multiple digits, because those can’t be any of the
digit triples:

{⍵/⍨{⍵=⍎∪⍕⍵}¨⍵}11+⍳976
12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 34 ...
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After the list has been reduced to numbers without mutliple digits, it gets stored in n
for later re‐use. Then I calculate the results of 0=n mod 2 3 5 7 11 13 17 with Outer
Product (see problem 1) and convert the table of results to a partitioned list using Split:

↓0=2 3 5 7 11 13 17∘.|n←{⍵/⍨{⍵=⍎∪⍕⍵}¨⍵}11+⍳976
┌─────────────────────────────────────────────────────────
│1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 ...
└─────────────────────────────────────────────────────────

Each partition holds the results of one of the 0=x mod n comparisons, and the list will
be used as a filter for n converted to 3‐digit lists with Encode like so:

(3⍴10)⊤n
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 ...
2 3 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 2

After using Each of the filter partitions on this result, we get the numbers that are
divisible by 2, 3, 5 etc. as seperate lists:

{⍵/(3⍴10)⊤n}¨↓0=2 3 5 7 11 13 17∘.|n←{⍵/⍨{⍵=⍎∪⍕⍵}¨⍵}11+⍳976
┌───────── ┬─────────
│0 0 0 0 0 │0 0 0 0 0
│1 1 1 1 2 ... │1 1 1 2 2 ...
│2 4 6 8 0 │2 5 8 1 4
└───────── ┴─────────

And because Encode returned the lists of digits as columns, I used Transpose to convert
that to rows and then Split to get a partitioned list of partitioned digit‐lists like so:

{⍉⍵/(3⍴10)⊤n}¨↓0=2 3 5 7 11 13 17∘.|n←{⍵/⍨{⍵=⍎∪⍕⍵}¨⍵}11+⍳976
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┐
│0 1 2│0 1 2│0 1 5│0 1 4│1 3 2│0 1 3│0 1 7│
│0 1 4│0 1 5│0 2 0│0 2 1│1 4 3│0 2 6│0 3 4│
│0 1 6│0 1 8│0 2 5│0 2 8│1 5 4│0 3 9│0 5 1│
│0 1 8│0 2 1│0 3 0│0 3 5│1 6 5│0 5 2│0 6 8│
│0 2 0│0 2 4│0 3 5│0 4 2│1 7 6│0 6 5│0 8 5│

...
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{↓⍉⍵/(3⍴10)⊤n}¨↓0=2 3 5 7 11 13 17∘.|n←{⍵/⍨{⍵=⍎∪⍕⍵}¨⍵}11+⍳976
┌───────────────────────────────────────────┬───────────────────────
│┌─────┬─────┬─────┬─────┬ ┬─────┬─────┐│┌─────┬─────┬─────┬
││0 1 2│0 1 4│0 1 6│0 1 8│ ... │9 8 4│9 8 6│││0 1 2│0 1 5│0 1 8│ ...
│└─────┴─────┴─────┴─────┴ ┴─────┴─────┘│└─────┴─────┴─────┴
└───────────────────────────────────────────┴───────────────────────

Phew, that was a lot to digest, and there’s probably an easier way to get to this result,
but at least it worked. So what do we have now: A partitioned list with each partition
containing the possible digit‐triples for d2d3d4, d3d4d5 etc. as a segmented list. This now
gets stored in d.

Still awake? good! So let’s continue with the second line, which is used to build the
valid combinations of all triples:

comb←{⍵/⍨9=≢¨∪¨⍵}↑{{(1↑⍵),3↓⍵}¨{⍵/⍨{(2↑1↓⍵)≡2↑3↓⍵}¨⍵},⍺∘.,⍵}/d

The rightmost function gets applied to d with Fold (please refer to problem 18 for a
refresher on this topic). In the first iteration, this first creates all possible combinations
of d7d8d9 and d8d9d10 using Catenate with Outer Product (⍺∘.,⍵). The resulting table is
then converted back to a segmented list with Ravel (,). Let’s see the result of this if
we simulate the first iteration by only applying it to ↑d[6] and ↑d[7]:

(↑d[6]){,⍺∘.,⍵}↑d[7]
┌───────────┬───────────┬───────────┬───────────┬───────────┬
│0 1 3 0 1 7│0 1 3 0 3 4│0 1 3 0 5 1│0 1 3 0 6 8│0 1 3 0 8 5│...
└───────────┴───────────┴───────────┴───────────┴───────────┴

But we are not interested in all combinations, but only those for which the last two
digits of d7d8d9 and the first two digits of d8d9d10 (etc.) are the same. So I filter this
result using {⍵/⍨{(2↑1↓⍵)≡2↑3↓⍵}¨⍵}. This checks exactly that for Each partition.
2↑1↓⍵ gets digits 2 and 3, 2↑3↓⍵ gets digits 4 and 5. The result of this now only
contains all combinations where those digits overlap:

(↑d[6]){{⍵/⍨{(2↑1↓⍵)≡2↑3↓⍵}¨⍵},⍺∘.,⍵}↑d[7]
┌───────────┬───────────┬───────────┬───────────┬───────────┬
│0 1 3 1 3 6│0 3 9 3 9 1│0 5 2 5 2 7│0 7 8 7 8 2│0 9 1 9 1 8│...
└───────────┴───────────┴───────────┴───────────┴───────────┴
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To finally get the combination (being d7d8d9d10 in this case), I apply {(1↑⍵),3↓⍵} to
Each result, which combines the first digit with three digits dropped, thus removing one
instance of the overlapping pair:

(↑d[6]){{(1↑⍵),3↓⍵}¨{⍵/⍨{(2↑1↓⍵)≡2↑3↓⍵}¨⍵},⍺∘.,⍵}↑d[7]
┌───────┬───────┬───────┬───────┬───────┬───────┬───────┬
│0 1 3 6│0 3 9 1│0 5 2 7│0 7 8 2│0 9 1 8│1 3 0 6│1 5 6 1│...
└───────┴───────┴───────┴───────┴───────┴───────┴───────┴

And because I apply this with Fold to d, the function will continoulsy work it’s way
forward, until in the last step d2d3d4 is combined with all valid (i.e. having overlapping
digit pairs) d3d4d5d6d7d8d9d10 combinations:

↑{{(1↑⍵),3↓⍵}¨{⍵/⍨{(2↑1↓⍵)≡2↑3↓⍵}¨⍵},⍺∘.,⍵}/d
┌─────────────────┬─────────────────┬─────────────────┬
│0 1 2 3 5 7 2 8 9│0 1 2 9 5 2 8 6 7│0 1 8 3 5 7 2 8 9│...
└─────────────────┴─────────────────┴─────────────────┴

We now have a list of all combinations, but still need to get rid of all of those that have
multiple digits. And we can do this in the usual manner by checking if the length of the
Unique list is 9, thus applying {⍵/⍨9=≢¨∪¨⍵} to Each partition:

{⍵/⍨9=≢¨∪¨⍵}↑{{(1↑⍵),3↓⍵}¨{⍵/⍨{(2↑1↓⍵)≡2↑3↓⍵}¨⍵},⍺∘.,⍵}/d
┌─────────────────┬─────────────────┬─────────────────┬
│1 0 6 3 5 7 2 8 9│1 3 0 9 5 2 8 6 7│1 6 0 3 5 7 2 8 9│...
└─────────────────┴─────────────────┴─────────────────┴

This leaves us with just six results, which are now all d2d3d4d5d6d7d8d9d10 combinations
which satisfy the problem, and I store this in comb. There is just one more thing to do,
and that is to prepend d1 to all results. We know that d1 can only be the number from 1
to 9 which is not a member of the result. To find this, we can useWhithout in (⍳9)~⍵,
which removes all members of ⍵ out of the list of numbers from 1 to 9:

{(⍳9)~⍵}1 0 6 3 5 7 2 8 9
4

We can now just append ⍵ to this, and we finally have our finished lsit of digits, which
we can convert to the corresponding number with Decode using 10⊥.
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Putting all of this together now gets our six resulting numbers:

{10⊥((⍳9)~⍵),⍵}¨comb
4106357289 4130952867 4160357289 1406357289 1430952867 1460357289

And the last step, as usual, is to apply +/ to this and we can use 0⍕ to get rid of the
scientific notation.

I know this wasn’t the most intuitive solution and a bit quick&dirty, but I’m just glad that
I found something that worked at all. And because it’s really fast, I don’t feel the urge
to optimize it any further. I just hope you could take something away from it!

111



Problem 44 – Pentagon numbers
Problem 44 brings us back to calmer waters.

Pentagonal numbers are generated by the formula, Pn = n(3n−1)/2. The first ten pentag‐
onal numbers are:

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...

It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70−22 = 48,
is not pentagonal.

Find the pair of pentagonal numbers, Pj and Pk , for which their sum and difference are
pentagonal and D = |Pk−Pj | is minimised; what is the value of D?

My solution works, but it works on the assumption that the first pair for which the sum
and the difference are pentagonal is the one with the lowest difference. I’m not totally
sure that if this is true, but it is the right solution nonetheless.

d←{{diff←∊∘.-⍨⍵⋄0<+/i←(diff∊⍵)∧(∊∘.+⍨⍵)∊⍵:diff[⍸i]⋄0}{2÷⍨⍵×¯1+3×⍵}¨⍳⍵}

{0<n←d ⍵:n⋄∇⍵+1000}1000

The first line does the actual work this time. It gets a number ⍵ as its input, and then
creates a list of the first ⍵ pentagonal numbers with 2÷⍨⍵×¯1+3×⍵¨⍳. The next func‐
tion then creates a list of the differences of all combinations of these numbers using
Outer Product with ∊∘.-⍨⍵, and stores that list in diff. Then it checks if there is a
pair for which also the sum is pentagonal with:

0<+/i←(diff∊⍵)∧(∊∘.+⍨⍵)∊⍵

So I useMembership to get a boolean list that has a 1 for all differences which are in the
list of pentagonal numbers. Then I do the same for the sums, and combine both results
with And, which gets stored in i. If we have a result, the sum of all elements of this will
be 1, hence I check if that sum is greater than 0. If it is, thenWhere is used to find the
index of that 1 and the list of difference is filtered for that index. Else, the function will
return 0.

The second function then starts with a limit of 1000 for d and if a result is found, it is
returned. If d returns 0, i.e. no result was found, then the function calls itself with the
limit raised by 1000.

I use this extra function because I didn’t want to set an arbitrary limit for d. Of course
you could just call d with 2500 and call it a day.
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Problem 45 – Triangular, pentagonal, and hexagonal
Figurative numbers again in problem 45:

Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:

Triangle Tn = n(n+ 1)/2 1, 3, 6, 10, 15, ...
Pentagonal Pn = n(3n−1)/2 1, 5, 12, 22, 35, ...
Hexagonal Hn = n(2n−1) 1, 6, 15, 28, 45, ...

It can be verified that T285 = P165 = H143 = 40755.

Find the next triangle number that is also pentagonal and hexagonal.

We can simplify this a bit, because all Hexagonal numbers are also Triangle numbers.
Specifically, all Tn with an odd n are Hexagonal numbers. This means that we only need
to create Hexagonal numbers and then check if they are also pentagonal, which I did in
the following solution. I also used the test for pentagonal numbers which can be found
in the corresponding Wikipedia article:

{h←+/⍳⍵⋄{(⌊n)=n←6÷⍨1+(1+24×⍵)*÷2:1⋄0}h:h⋄∇⍵+2}287

The function takes 287 as its initial argument, because that will create the next higher
hexagonal number. The number itself is then calculated with +/⍳⍵ (see problem 12)
and stored in h. The following guard uses the test for pentagonal numbers mentioned
above to check if that produced a pentagonal number. If it did, the number is returned,
else the function calls itself again with the next higher odd number. And that’s it!
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Problem 46 – Goldbach’s other conjecture
Problem 46 deals with one of Christian Goldbach’s conjectures:

It was proposed by Christian Goldbach that every odd composite number can be written
as the sum of a prime and twice a square.

9 = 7 + 2×12

15 = 7 + 2×22

21 = 3 + 2×32

25 = 7 + 2×32

27 = 19 + 2×22

33 = 31 + 2×12

It turns out that the conjecture was false.

What is the smallest odd composite that cannot be written as the sum of a prime and twice
a square?

My solution re‐uses the Sieve of Eratosthenes function from problems 7 and 10, so
please refer to those for details:

soe←{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍸⍵}0 1,(⍵-2)⍴1 0}

{⌊/∊{l←2÷⍨⍵-p[⍸p<⍵]⋄0<≢l/⍨{⍵=⌊⍵}l*÷2:⍬⋄⍵}¨(1+2×⍳2÷⍨⍵)~(p←soe ⍵)}10000

I set a fixed limit of 10000 this time, but you could easily adjust the function to conti‐
nously raise the limit if no solution is found with a lower one. After the list of primes
under 1000 is built and stored in p, I set up a list of odd numbers excluding all primes
usingWithout in (1+2×⍳2÷⍨⍵)~(p.... The actual worker function is this:

{l←2÷⍨⍵-p[⍸p<⍵]⋄0<≢l/⍨{⍵=⌊⍵}l*÷2:⍬⋄⍵}

Applied to Each odd composite number in the list, it first creates a list by subtracting
each prime lower than the current input from this number with ⍵-p[⍸p<⍵]. The result
is then divided by 2 (with switch to save parentheses), because the difference between
the number and the prime should be twice a square. The resulting list is stored in l.

Then follows a guard which checks if 0<≢l/⍨{⍵=⌊⍵}l*÷2. This takes the square root
of each element in l and ⍵=⌊⍵ tests if the result is integer by comparing it to its floor.
If this results in a number (or a list of numbers), an empty vector is returned, because
then the conjecture was true for that number. If the rsult is empty, the function returns
the number. Because there is more than one result under 10000, I prepend ⌊/∊ to get
the minimum of the Enlisted results.
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Problem 47 – Distinct primes factors
Primes again in problem 47:

The first two consecutive numbers to have two distinct prime factors are:

14 = 2×7
15 = 3×5

The first three consecutive numbers to have three distinct prime factors are:

644 = 22×7×23
645 = 3×5×43
646 = 2×17×19

Find the first four consecutive integers to have four distinct prime factors each. What is
the first of these numbers?

I went all the way back to problem 3/12 to make use of the prime factorization function
again. And my solution looks like this:

upf←{⍺←3⋄0=2|⊃⍵:∇(÷∘2@1)⍵,2⋄0=⍺|⊃⍵:⍺∇(÷∘⍺@1)⍵,⍺⋄(⍺×⍺)<⊃⍵:(⍺+2)∇⍵⋄≢∪⍵~1}

{⍺←0⋄4=upf ⍵:(⍺+1)∇⍵+1⋄⍺=4:⍵-4⋄0∇⍵+1}210

It’s a bit slow (7 seconds on my laptop), but we don’t care, do we? Well, we probably
should, but I need to work out a faster prime factorization function first. Hence, the
upf function is exactly the same as in problem 12, except for the fact that it returns
≢∪⍵~1 instead of just ⍵~1, to get the number of distinct factors.

The worker function starts with 210 (because this is 2x3x5x7, the smallest number with
four distinct prime factors) and an initial value of 0 for ⍺. Then it checks if the current
⍵ has four distinct prime factors. If that evaluates to true, the function calls itself again
with ⍺+1 and ⍵+1. So ⍺ acts as the counter, and when it is increased to 4 (i.e. four
consecutive numbers with four distinct prime factors were found), then it returns ⍵-4,
being the lowest one of those. Else, ⍺ is reset to zero and the function continues with
⍵+1.
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Problem 48 – Self powers
Problem 48 deals with self powers up to 10001000, so we need to figure out a workaround
for big integers again:

The series, 11 + 22 + 33 + ...+ 1010 = 10405071317.

Find the last ten digits of the series, 11 + 22 + 33 + ...+ 10001000.

That ”last ten digits” bit comes to our rescue, because we can just truncate each step
with modulo calculations while we build up the self powers:

¯10↑0⍕+/{⍵{⍺×1e10|⍵}⍣⍵⊢1}¨⍳1000

The input is a list of the numbers from 1 to 1000, as you would expect. The inner func‐
tion then uses the Power Operator to calculate the nth power of n. The left argument
is the base, the argument for the Power Operator is the exponent, and the initial input
is 1, i.e. n0. This example shows that for 210:

2{⍺×1e10|⍵}⍣10⊢1
1024

The use of 1e10|⍵ instead of just ⍵ makes sure that we don’t get more digits than we
need (or APL can digest). We just need to pass the input number as base and exponent
to this, and then sum the list of results. Format with 0 makes sure that we don’t get the
result in scientific notation, and ¯10↑ returns the last 10 digits.
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Problem 49 – Prime permutations
Primes and permutations – could you ask for more? And problem 49 delivers.

The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330,
is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4‐digit
numbers are permutations of one another.

There are no arithmetic sequences made up of three 1‐, 2‐, or 3‐digit primes, exhibiting
this property, but there is one other 4‐digit increasing sequence.

What 12‐digit number do you form by concatenating the three terms in this sequence?

I use my trusty prime sieve (see problems 7 and 10) to create a list of primes between
1000 and 10000 for this solution:

p←{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄(1e3<⍸⍵)/⍸⍵}0 1,(⍵-2)⍴1 0}1e4
can←{⍵/⍨{⍵[3]∊p}¨⍵}{⍵,⍵[2]--/⍵}¨↑,/{⍵,¨p[⍸p>⍵]}¨p~1487

{↑∊¨⍕¨¨⍵/can}{2=+/2≡/{⍵[⍋⍵]}¨⍕¨⍵}¨can

The first line sets up our prime list as usual, except for the fact that I limit the result to
primes larger than 1000 to comply with the problem. This list is now the input to the
next function, and I usedWithout in p~1487 to exclude the example.

The function itself now takes Each prime from the list and appends every prime that
is larger than itself with ⍵,¨p[⍸p>⍵]. To remove a level of segmentation and the
surrounding box from this (essetially making it a partitioned list of prime pairs), I used
Ravel with Reduce and then Mix which results in this:

↑,/{⍵,¨p[⍸p>⍵]}¨p~1487
┌─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬
│1009 1013│1009 1019│1009 1021│1009 1031│1009 1033│1009 1039│...
└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴

Nowwe need to add the third term to Each of those pairs, which is the second term plus
the difference of the second and first term. A short way of getting this is ⍵[2]--/⍵,
which results in the following list of triples:

{⍵,⍵[2]--/⍵}¨↑,/{⍵,¨p[⍸p>⍵]}¨p~1487
┌──────────────┬──────────────┬──────────────┬──────────────┬
│1009 1013 1017│1009 1019 1029│1009 1021 1033│1009 1031 1053│...
└──────────────┴──────────────┴──────────────┴──────────────┴
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Now we need to remove all triples whose the third term isn’t prime. Do do this, I
use ⍵/⍨⍵[3]∊p¨⍵ which checks with Membership if the third term of Each triple is
an Element of the prime list and then uses the resulting list as a filter for the list of
candidates:

{⍵/⍨{⍵[3]∊p}¨⍵}{⍵,⍵[2]--/⍵}¨↑,/{⍵,¨p[⍸p>⍵]}¨p~1487
┌──────────────┬──────────────┬──────────────┬──────────────┬
│1009 1021 1033│1009 1039 1069│1009 1051 1093│1009 1063 1117│...
└──────────────┴──────────────┴──────────────┴──────────────┴

I decided to split the function at this point, because it would get rather long otherwise,
so I stored the resulting candidates in can. We now need to filter out all triples whose
numbers are permutations of each other. To do this, I apply 2=+/2≡/⍵[⍋⍵]¨⍕¨⍵ to
Each triple. This first converts Each number of the triple to a string and then sorts Each
string in ascending order:

{{⍵[⍋⍵]}¨⍕¨⍵}¨can
┌────────────────┬────────────────┬────────────────┬────────────────┬
│┌────┬────┬────┐│┌────┬────┬────┐│┌────┬────┬────┐│┌────┬────┬────┐│
││0019│0112│0133│││0019│0139│0169│││0019│0115│0139│││0019│0136│1117││...
│└────┴────┴────┘│└────┴────┴────┘│└────┴────┴────┘│└────┴────┴────┘│
└────────────────┴────────────────┴────────────────┴────────────────┴

We can now insertMatch pairwise, which results in 1 1 if all three strings are the same,
like in this example:

{2≡/{⍵[⍋⍵]}¨⍕¨⍵}1487 4817 8147
1 1

And if we sum this result with +/ and compare that to 2, we know that we have found
the triple we are looking for. The last block now uses the boolean list resulting from
this as a filter for can, converts Each digit from Each number to a character and then
Enlists the result which is our final answer.
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Problem 50 – Consecutive prime sum
And we are finally ready to tackle the last problem of this book: Problem 50. And a nice
one it is:

The prime 41, can be written as the sum of six consecutive primes: 41 = 2 + 3 + 5 + 7 +
11 + 13

This is the longest sum of consecutive primes that adds to a prime below one‐hundred.

The longest sum of consecutive primes below one‐thousand that adds to a prime, contains
21 terms, and is equal to 953.

Which prime, below one‐million, can bewritten as the sum of themost consecutive primes?

As usual with primes, I use the prime sieve explained in problems 7 and 10, up to alimit
of one million for this solution:

p←{n←⍵⋄3{n≥⍺×⍺:(⍺+2)∇(0@((⍺-1)↓⍺×⍳⌊n÷⍺))⍵⋄⍸⍵}0 1,(⍵-2)⍴1 0}1e6
sums←{{⍺←1⋄1e6>s←+/⍺↑⍵:(⍺+1)∇⍵⋄⍺{p∊⍨⍵:⍵,⍺⋄⍺>1:(⍺-1)∇(⊃⍵)-l[⍺]}s}l←⍵}

{⊃∊⍵[⍒⊃¨⌽¨⍵]}{sums ⍵↓p}¨⍳1000

The sums function is responsible of outputting the maximum sum and chain length
found by starting the sum at each prime number. The first guard sets ⍺←1 for the initial
run, and then continuously builds up the sum of all following primes until that would
get larger that one million with 1e6>s←+/⍺↑⍵:(⍺+1)∇⍵. As you can see, the sum is
stored in s.

When the point is reached where the sum would get larger than one million, the Else
case takes effect, which contains the following function:

⍺{p∊⍨⍵:⍵,⍺⋄⍺>1:(⍺-1)∇(⊃⍵)-l[⍺]}s

This gets the current value of ⍺ as its left argument, and the sum s as its right input.
This checks if the current sum is already a prime with p∊⍨⍵. If that is the case, it returns
the sum and appends ⍺ to it, which gives us a sum/chain length pair. If the current sum
is not a prime number, the function continously subtracts the last added primes using
(⍺-1)∇(⊃⍵)-l[⍺], with l being a copy of the outer functions input (you’ll see why
in a minute). This goes on until the sum is reduced to a prime.

The worker function now calls sumswith the prime list as its input, but in each iteration
one more element is dropped from the beginning of the list, which essentialy works
offsets the starting index of sums to the next higher prime number.
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The end result of this is a partitioned list of sum/length paris, here with just the first
five results:

{sums ⍵↓p}¨⍳1000
┌──────────┬──────────┬ ┬─────────┐
│920291 525│978037 539│...│742757 89│
└──────────┴──────────┴ ┴─────────┘

I arbitrarily set the limit to 1000, because I assumed that the longest chains would result
from the lowest primes, and indeed you could set that much, much lower and still get
the correct answer.

Now we just need to find the pair with the longest chain and get the corresponding
sum. This is done with ⊃∊⍵[⍒⊃¨⌽¨⍵], which takes all chain lengths with ⊃¨⌽¨⍵ and
uses that with Grade Down to sort the list of results. The sum in question is then just
the first element of the Enlisted result.

120



Postface
So that’s the end of my ”book” (or collection of short stories). Kudos to you if you made
it all the way through!

As I already mentioned in the preface, please don’t take this as the definitve guide to
APL. It’s just a documentation of my progress as I went along, and using Project Euler is
my favourite way of learning the basics of a new programming language. You definitely
shouldn’t hesitate to challenge my solutions as I’m sure there are better ones.

Have a good one!
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